当前位置:网站首页 >> 作文 >> 音乐数数歌教案(优质13篇)

音乐数数歌教案(优质13篇)

格式:DOC 上传日期:2024-03-20 21:50:50
音乐数数歌教案(优质13篇)
时间:2024-03-20 21:50:50     小编:琉璃

作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?下面是小编带来的优秀教案范文,希望大家能够喜欢!

音乐数数歌教案篇一

小班幼儿年龄都在2.5—3岁左右,发音吐字还不准确。

1.通过观看课件,清楚的理解绕口令的内容。

2.学说绕口令,能正确发出儿歌中每个字的读音。

3.能安静地倾听别人的发言,并积极思考,体验文学活动的乐趣。

4.培养幼儿大胆发言,说完整话的好习惯。

5.鼓励幼儿敢于大胆表述自己的见解。

1.理解绕口令德内容,学说绕口令。

2.能正确发出儿歌中每个字的读音。

1.许多动物的图片一张

2.课件

3.各种动物的头饰

4.虎、鹿、猪、兔、鼠的手偶各一个

小红花若干

一.开始部分

1.拍手组织幼儿坐好,教师做模仿操导入。

师:“刚才老师模仿了哪几种小动物,你们知道吗?”(请幼儿说出他们的名字)

2.出示许多动物的图片,让幼儿观察。

二.基本部分

1.逐次播放课件,让幼儿学念绕口令。

师:“它是谁?(大老虎)老虎今天在哪里玩?”(山上)在幼儿回答后,要反复纠正“虎”的发音。

2.放慢速度教幼儿念短句“山上一只虎。”

3.用同样的方法教幼儿念其它的短句,注意:要在幼儿的跟读中纠正字的读音。

4.出示手偶,以提问的形式帮助幼儿记忆绕口令的内容。

师:“我是大老虎,我刚才在哪里玩?”(依次提问)

5.告诉幼儿绕口令的名称。

师:“这首好听的绕口令名字叫‘数数歌’。

5.师生齐念绕口令,在幼儿熟记内容后,可加快速度念

三.结束活动

师:“小动物们真可爱,那我们应该怎样跟它们相处呢?”(爱护它们,不伤害它们)

2.做游戏:边念绕口令边做模仿

3.鼓励做得好的幼儿,给他们发一朵小红花。

四.延伸活动

播放歌曲《我爱我的小动物》,让幼儿边听边表演

音乐数数歌教案篇二

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

(1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

(2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

(1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

(2) 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。

(3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。

(1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

(2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。

音乐数数歌教案篇三

2.探究发现任意角 的终边和 角的终边与单位圆的交点坐标关于原点对称;

3.探究发现任意角 与 的三角函数值的关系.

利用诱导公式(二),口答下列三角函数值.

(1). ;(2). ;(3). .

喜悦之后让我们重新启航,接受新的挑战,引入新的问题.

由sin300= 出发,用三角的定义引导学生求出 sin(-300),sin1500值,让学生联想若已知sin = ,能否求出sin( ),sin( )的值.

1.探究任意角 与 的三角函数又有什么关系;

2.探究任意角 与 的三角函数之间又有什么关系.

遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题-观察发现-到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战.而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战.彼此相信,彼此信任,产生了师生的默契,师生共同进步.

诱导公式(三)、(四)

给出本节课的课题

三角函数诱导公式

标题的后出,让学生在经历整个探索过程后,还回味在探索,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结.

的三角函数值,等于 的同名函数值,前面加上一个把 看成锐角时原函数值的符合.(即:函数名不变,符号看象限.)

设计意图

简便记忆公式.

求下列三角函数的值:(1).sin( ); (2). co.

设计意图

本练习的设置重点体现一题多解,让学生不仅学会灵活运用应用三角函数的诱导公式,还能养成灵活处理问题的良好习惯.这里还要给学生指出课本中的“负角”化为“正角”是针对具体负角而言的.

学生练习

化简: .

设计意图

重点加强对三角函数的诱导公式的综合应用.

1.小结使用诱导公式化简任意角的三角函数为锐角的步骤.

2.体会数形结合、对称、化归的思想.

3.“学会”学习的习惯.

1.课本p-27,第1,2,3小题;

2.附加课外题 略.

设计意图

加强学生对三角函数的诱导公式的记忆及灵活应用,附加题的设置有利于有能力的同学“更上一楼”.

八.课后反思

对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,针对教材的内容,编排了一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来,通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到了一定的预期效果,尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。

然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。

在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。用全新的理论来武装自己,让自己的课堂更有效。

音乐数数歌教案篇四

在函数教学中,我们不仅要在教会函数知识上下功夫,而且还应该追求解决问题的“常规方法”——基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数教学。 在函数的教学中,应突出“类比”的思想和“数形结合”的思想。

2. 注重“数学结合”的教学

数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

( 1 )让学生经历绘制函数图象的具体过程。

( 2 )切莫急于呈现画函数图象的简单画法。

( 3 )注意让学生体会研究具体函数图象规律的方法。

目标

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会选择两个合适的点画出一次函数的图象;

3、掌握一次函数的性质.

过程与方法目标

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

一次函数的图象和性质。

由一次函数的图像归纳得出一次函数的性质及对性质的理解。

音乐数数歌教案篇五

(一)知道函数图象的意义;

(二)能画出简单函数的图象,会列表、描点、连线;

(三)能从图象上由自变量的值求出对应的函数的近似值。

重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。

难点:对已恬图象能读图、识图,从图象解释函数变化关系。

1.什么叫函数?

2.什么叫平面直角坐标系?

3.在坐标平面内,什么叫点的横坐标?什么叫点的.纵坐标?

4.如果点a的横坐标为3,纵坐标为5,请用记号表示a(3,5).

5.请在坐标平面内画出a点。

6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)

我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x为自变量时,y是x的函数。

这个函数关系中,y与x的函数。

这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。

音乐数数歌教案篇六

1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来。

2.初步培养学生观察、分析和抽象思维的能力。

1.教学重点、难点

重点:列代数式。

难点:弄清楚语句中各数量的意义及相互关系。

2.本节知识结构:

本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。

3.重点、难点分析:

列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。

如:用代数式表示:比的2倍大2的数。

分析本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2+2.

4.列代数式应注意的问题:

(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。

(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。

(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。

(4)在代数式中出现除法时,用分数线表示。

5.教法建议:

列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

教学设计示例

列代数式

2.初步培养学生观察、分析和抽象思维的能力.

教学重点和难点

重点:列代数式.

难点:弄清楚语句中各数量的意义及相互关系.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1用代数式表示乙数:(投影)

(1)乙数比x大5;(x+5)

(2)乙数比x的2倍小3;(2x-3)

(3)乙数比x的倒数小7;(-7)

(4)乙数比x大16%((1+16%)x)

(应用引导的方法启发学生解答本题)

二、讲授新课

例1用代数式表示乙数:

(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%

解:设甲数为x,则乙数的`代数式为

(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x

(本题应由学生口答,教师板书完成)

最后,教师需指出:第4小题的答案也可写成x+16%x

例2用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的与乙数的的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式

解:设甲数为a,乙数为b,则

(1)2(a+b);(2)a-b;(3)a2+b2;

(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)

(本题应由学生口答,教师板书完成)

例3用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

解:(1)3n;(2)5m+2

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)

例4设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和

分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)

例5设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

解:(1)m(m+6)个;(2)(m)m个

三、课堂练习

1设甲数为x,乙数为y,用代数式表示:(投影)

(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商

2用代数式表示:

(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数

3用代数式表示:

(1)与a-1的和是25的数;(2)与2b+1的积是9的数;

(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数

〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)〕

四、师生共同小结

首先,请学生回答:

1怎样列代数式?2列代数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

五、作业

1用代数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

2已知一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积.

学法探究

分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律.

音乐数数歌教案篇七

浙教版《义务教育六年制小学数学课本》五年级上册p3页

二、教学目标

1、使学生理解一个数乘小数的意义就是求这个数的十分之几、百分之几、千分之几……

2、掌握整数乘小数的计算方法,并能正确地进行计算,数学教案-整数乘小数。理解积和第一个因数的大小关系,并能正确地进行判断和估算。

3、养成良好的规范书写的习惯。

三、教学过程

预设学习材料与教学路径

预设学生活动

与备选方案

环节意图

与实施要求

一、准备导入:

1、复习小数的意义

说说下列小数的意义:

0.50.20.1230.56

2、出示例题

学生列式不计算。

3、揭题:今天继续来学习小数乘法中的另一类,一个数乘小数。

二、展开教学

1、分别说说这三个算式所表示的意义,可以讨论一下。

2、揭示并板书意义

3、请在小组中相互编题来考考同学,说说意义,小学数学教案《数学教案-整数乘小数》。之后抽一个小组汇报一下编的情况和说的情况。

4、尝试用竖式来计算一下

5、反馈尝试情况:说说你是怎样计算的?为什么要这样计算?

格式上有什么要求?投影学生在草稿上的格式。

6、用竖式规范地计算下面各题:

35×1.235×0.9

35×1.135×0.6

学生板演

比较积与第一个因数的.大小,你发现了什么?

三、练习:

完成课本中的“练一练”各题

四、小结:说说你有何收获?

学生对第一个算式所表示的意义肯定能说,对第二个算式不一定会说,如果学生能说,则让学生说一说,当说不明白时,则建议用合理的方式来表示(线段图、画图等)

如果学生说不出来,则教师用线段图的方式来帮助学生理解其意义。

让学生能顺利理解一个数乘小数的意义作好铺垫。

让学生来说说意义,则是了解学生对这一部份的知识了解程度,有利于教师进行针对性的教学。

课本中的练习很好,应该充分利用。

教学反思:

数学教案-整数乘小数

音乐数数歌教案篇八

倒数的认识是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。倒数的认识是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

1.理解倒数的意义,掌握求倒数的方法。

2.能熟练地写出一个数的倒数。

3.结合教学实际培养学生的抽象概括能力。

理解倒数的意义,掌握求倒数的方法。

熟练写出一个数的倒数。

1.交流

师:我们的黑板是什么颜色?

生:黑色。

师:教室的墙面又是什么颜色?

生:黑色。

师:黑与白在语文上是什么关系?

生:黑是白的反义词。

生:白是黑的反义词。

师:能说黑是反义词或白是反义词吗?

生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。

师:那么,数学上有没有相互依存关系的现象呢?

生:约数和倍数。

师:你能举例说明约数和倍数的`相互依存关系吗?

生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

2.导入今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。

对数游戏

1.学习倒数的意义

我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4说一个数,同学们跟着根据3和4说一个数。

师:4是3的4/3,

生:3是4的3/4

师:7是15的7/15;生:15是7的15/7。

提问;看我们做游戏的结果,你们有没有发现什么?

音乐数数歌教案篇九

1.进一步理解指数函数的性质;

2.能较熟练地运用指数函数的性质解决指数函数的平移问题;

指数函数的性质的应用;

指数函数图象的平移变换.

1.复习指数函数的概念、图象和性质

练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为.若a1,则当x0时,y1;而当x0时,y1.若00时,y1;而当x0时,y1.

例1解不等式:

(1);(2);

(3);(4).

小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.

例2说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:

(1);(2);(3);(4).

小结:指数函数的平移规律:y=f(x)左右平移y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移).

练习:

(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数的图象.

(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数的图象.

(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是.

(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是.函数y=a2x-1的图象恒过的定点的坐标是.

小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.

(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?

(6)如何利用函数f(x)=2x的图象,作出函数y=|2x-1|的图象?

小结:函数图象的对称变换规律.

例3已知函数y=f(x)是定义在r上的奇函数,且x0时,f(x)=1-2x,试画出此函数的图象.

例4求函数的最小值以及取得最小值时的x值.

小结:复合函数常常需要换元来求解其最值.

练习:

(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于;

(2)函数y=2x的值域为;

(4)当x0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围.

1.指数函数的性质及应用;

2.指数型函数的定点问题;

3.指数型函数的草图及其变换规律.

课本p55-6,7.

(1)函数f(x)的定义域为(0,1),则函数的定义域为.

(2)对于任意的x1,x2r,若函数f(x)=2x,试比较的大小.

音乐数数歌教案篇十

1.理解的概念,了解的三种表示法,会求的定义域.

(3)能正确使用“区间”及相关符号,能正确求解各类的定义域.

2.通过概念的学习,使学生在符号表示,运算等方面的能力有所提高.

(1)对记号有正确的理解,准确把握其含义,了解(为常数)与的区别与联系;

(2)在求定义域中注意运算的合理性与简洁性.

3.通过定义由变量观点向映射观点的过渡,是学生能从发展的角度看待数学的学习.

1.教材分析

(1)知识结构

(2)重点难点分析

是的定义和符号的认识与使用.

2.教法建议

音乐数数歌教案篇十一

1、观察由“长条”变“圆圈”、由“小”变“大”的过程,感知圆及大小的'含义。

2、体验游戏的快乐。

彩色塑料打包带一根。

1、教师故作神秘地说:

我有一根细细长长的东西,你们想看看吗?

2、出示包装带:

别看它细细长长、简简单单的样子,它的本领可不小,它会变戏法呢!

请小朋友闭上眼睛,它要开始变了。

3、教师把打包带接成一个小圆圈,一、二、三!

睁开眼睛看一看,它变成什么?

气球太小了,我们一起来打气,好吗?

4、教师让“气球”一点点变大,带幼儿边做打气动作、边说:

气气气,变大喽!气气气,变大喽!……

5、当“气球”不能变大时,教师放开打包带的一端让它弹起,并说:啪——气球破掉了!

6、同上形式,反复游戏。

音乐数数歌教案篇十二

教学目标:

知识与技能

1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

过程与方法

1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感与价值观

1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

教学重点:

1、掌握函数概念。

2、判断两个变量之间的关系是否可看作函数。

3、能把实际问题抽象概括为函数问题。

教学难点:

1、理解函数的概念。

2、能把实际问题抽象概括为函数问题。

教学过程设计:

一、创设问题情境,导入新课

『师』:同学们,你们看下图上面那个像车轮状的物体是什么?

音乐数数歌教案篇十三

理解无理数指数幂得实际意义。

教材52页至53页的意义解读。

同学们,你们通过自主学习,还有哪些疑惑请写在下面的横线上:

课内探究学案

1.能熟练进行根式与分数指数幂间的互化。

2.理解无理数指数幂的概念。

学习重点:实数指数幂的的运算及无理数指数幂的理解

学习难点:无理数指数幂的理解

1.解释的意义,理解分数指数幂与根式的互化。探究的实际意义。

2.反思总结

得出结论:一般地,无理数指数幂(是无理数)是一个确定的实数。有理数指数幂的运算同样适用于无理数指数幂。

3.当堂检测

(1)参照以上过程,说明无理数指数幂的意义。

课后练习与提高

1.下列说法错误的是()

a.根式都可以用分数指数幂来表示

b.分数指数幂不表是相同式子的乘积,而是根式的一种新的写法

c.无理数指数幂有的不是实数

d.有理数指数幂的运算性质适用于无理数指数幂

本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。

本节课的什么叫基本物理量、物理量的单位、导出单位、单位制以及单位制和单位统一的重要性的理解是课本上重要内容。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服