人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
倒数的认识教学目标设计十篇一
新人教版六年级数学上册第28页的例1。
1、通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。
2、学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。
3、在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。
理解倒数的意义,学会求倒数的方法。
熟练正确的求小数、带分数的倒数,发现倒数的一些特征。
多媒体课件。
一、猜字游戏导入,揭示课题。
上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。
如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8 /3)。
师:谁还能说出这样的数?(课件出示)
象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)
二、出示学习目标:
1、理解倒数的意义。
2、掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。
三、自主探究新知
(一)探究讨论,理解倒数的意义。
1、(课件出示教材第24页例1的四个算式。)
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)
生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
2、出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。
(二)深化理解。
1、乘积是1的两个数存在着怎样的倒数关系呢?
举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)
2、互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)
例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)
3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)
(三)运用概念。
1、讨论求一个数的倒数的方法。
所以3/5的倒数是5/3,7/2的倒数是2/7 。(能不能写成3/5=5/3,为什么?)
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)
2、怎样求小数和带分数的倒数呢?(课件演示,学生观察。)
师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。
3、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)
四、堂堂清作业
(一)填一填。(出示课件)
1、乘积是()的()个数()倒数。
2、a和b互为倒数,那a的倒数是(),b的倒数是()。
3、只有当假分数为()时,它与它的倒数相等;而()是没有倒数。
4、一个真分数的倒数一定是()。
(二)判断题。(演示课件)
1、5/3是倒数。()
2、因为3/4×4/3=,所以4/3是倒数。()
3、真分数的倒数大于1,假分数的倒数小于1。()
4、因为1/4+3/4=1,所以1/4和/4互为倒数。()
(三)说一说。(课本第29页的第3题)
五、课堂小结:
乘积是1的两个数互为倒数。 0没有倒数,1的倒数是它本身。例2:写出其中2/5 、7/2两个分数的倒数。
2/5的分子分母调换位置---5/2 7/2的分子分母调换位置---2/7 6的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。
求小数的倒数的先把小数化成分数,再把分子和分母调换位置。
倒数的认识教学目标设计十篇二
引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法;
通过互助活动,培养学生与人合作、与人交流的习惯;
通过自行设计方案,培养学生自主探索和创新的意识。
教学重、难点:理解倒数的含义,掌握求倒数的方法。
教学过程:
(一)导入
1.找找下面文字的构成规律
呆---杏土---干吞---吴
2.按照上面的规律填数
--()--()--()
能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数
(二)教学实施
关于倒数同学们想知道些什么呢?学习倒数的含义
1.观察教材24页的例1,归纳,总结倒数的含义,
2.举例验证:4和,7和,3和4乘的积是,所以4和互为倒数;
7可以看成分母是1的分数,把分子、分母调换位置后就是,所以7和互为倒数。
归纳:乘积是1的两个数互为倒数。
3.特殊数:0和1(引导学生辩论0有没有倒数,1有没有倒数,是多少?)
教师归纳板书:0没有倒数,1的倒数就是它本身。
4.学习例2--求倒数的方法
5.反馈练习
完成教材24页的做一做,完成练习六的第3、4题
(三)课堂练习
找一找下列数中哪两个数互为倒数
210
填空
()的倒数是(),()的倒数是。
10的倒数是(),()没有倒数。
(四)课堂小结
学完本节课,我们知道了乘积是1的来年各个数互为倒数。1的倒数是它本身,0没有倒数。
课后反思:
倒数的认识教学目标设计十篇三
二、教材分析:
倒数的认识是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。倒数的认识是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
三、教学目标:
1.理解倒数的意义,掌握求倒数的方法。
2.能熟练地写出一个数的倒数。
3.结合教学实际培养学生的抽象概括能力。
四、教学重点:理解倒数的意义,掌握求倒数的方法。
五、教学难点:熟练写出一个数的倒数。
六、教学过程:
(一)、谈话
1.交流
师:
我们的黑板是什么颜色?
生:黑色。
师:教室的墙面又是什么颜色?
生:黑色。
师:黑与白在语文上是什么关系?
生:黑是白的反义词。
生:白是黑的反义词。
师:能说黑是反义词或白是反义词吗?
生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。
师:那么,数学上有没有相互依存关系的现象呢?
生:约数和倍数。
师:你能举例说明约数和倍数的相互依存关系吗?
生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。
2.导入
今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。
(二)、学习新知
对数游戏
1.学习倒数的意义
我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数 。
师:4是3的4/3,
生:3是4的 3/4
师:7是15的7/15;
生:15是7的15/7。
提问;
看我们做游戏的结果,你们有没有发现什么?
倒数的认识教学目标设计十篇四
新人教版六年级数学上册第28页的例1。
1、通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。
2、学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。
3、在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。
教学重点:
理解倒数的意义,学会求倒数的方法。
教学难点:
熟练正确的求小数、带分数的倒数,发现倒数的一些特征。
教学准备:
多媒体课件。
教学过程:
一、猜字游戏导入,揭示课题。
上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。
如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8 /3)。
师:谁还能说出这样的数?(课件出示)
象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)
二、出示学习目标:
1、理解倒数的意义。
2、掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。
三、自主探究新知
(一)探究讨论,理解倒数的意义。
1、(课件出示教材第24页例1的四个算式。)
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)
生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
2、出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。
(二)深化理解。
1、乘积是1的两个数存在着怎样的倒数关系呢?
举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)
2、互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)
例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)
3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)
(三)运用概念。
1、讨论求一个数的倒数的方法。
所以3/5的倒数是5/3,7/2的倒数是2/7 。(能不能写成3/5=5/3,为什么?)
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)
2、怎样求小数和带分数的倒数呢?(课件演示,学生观察。)
师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。
3、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)
四、堂堂清作业
(一)填一填。(出示课件)
1、乘积是()的()个数()倒数。
2、a和b互为倒数,那a的倒数是(),b的倒数是()。
3、只有当假分数为()时,它与它的倒数相等;而()是没有倒数。
4、一个真分数的倒数一定是()。
(二)判断题。(演示课件)
1、5/3是倒数。()
2、因为3/4×4/3=,所以4/3是倒数。()
3、真分数的倒数大于1,假分数的倒数小于1。()
4、因为1/4+3/4=1,所以1/4和/4互为倒数。()
(三)说一说。(课本第29页的第3题)
五、课堂小结:
乘积是1的两个数互为倒数。 0没有倒数,1的倒数是它本身。例2:写出其中2/5 、7/2两个分数的倒数。
2/5的分子分母调换位置---5/2 7/2的分子分母调换位置---2/7 6的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。
求小数的倒数的先把小数化成分数,再把分子和分母调换位置。
倒数的认识教学目标设计十篇五
1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。
2、培养学生观察、归纳、推理和概括的能力。
小组汇报交流。(通过计算,发现每组算式的乘积都是1.通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。
让学生读一读:倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)
判断下面的句子错在哪里?应该怎样叙述?
因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。
出示例2,找一找那两个数互为倒数?
汇报找的结果,并说一说怎样找到的?
1,看两个分数的乘积是不是1;
2,看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)
通过具体实例总结归纳找倒数的方法。
分子、分母交换位置
例:3/55∕3 3∕5的倒数是5∕3
(2)找倒数的倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。
分子、分母交换位置
例:6=1∕6 6的倒数是1∕6.
看一看。例2中的那些数据没有找到倒数?(1,0)
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、关于1的倒数。
也可以这样推导:1= 1∕1=1,1的倒数是1.
2、关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
交换分子、分母的位置
也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。
1、完成做一做,先独立做,再全班交流。
2、练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、同桌进行互说倒数活动(练习六第2题)。
今天学习了什么?
什么叫倒数?怎样找到一个数的倒数?
倒数的认识教学目标设计十篇六
《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。
学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。
1、知道倒数的意义,会求一个数的倒数。
2、经历倒数的意义这一概念的形式过程。
3、培养学生观察、归纳、推理和概括的能力。
4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。
理解倒数的意义,会求一个数的倒数。
略
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。这节课上,我采用了探究式的教学方法,正确处理了“教教材”和“用教材”的关系。1.在本课的引入中,我没有采用多种铺垫,而是直接通过让学生计算教材中的四个乘法算式,观察积的特点与算式中两个因数的特点,直接对倒数形成了初步的认识,更明白了只要调换分子与分母的位置就会得到一个新的分数。为了使学生深入了解倒数的意义,我引导学生举了大量分数的例子,并通过观察、计算等方法使学生明确“互为倒数的两个数的乘积是1”、“倒数的两个数只是把分子和分母的位置进行调换”、更让我高兴的是学生能注意到“倒数是相互依存的”。抓住学生的这一发现,我引导他们很快就总结出了倒数的概念——乘积是1的两个数叫做互为倒数。2.在让学生通过研究求各种数的倒数的方法的环节上,避免了学生在学习中只会求分数的倒数的知识的单一,延伸的所学的内容。在最后,面对特殊的0和1这两个数时,学生们出现了小小的“争执”。有人认为:“0和1有倒数。”有人认为:“0和1没有倒数。”对于学生的“争执”我没有直接介入,而是引导他们互相说说自己的理由,在他们的交流中,学生们达成了一致的认识:0没有倒数,1的倒数是它本身。并且在说明理由时,学生还认为“0不能做分母,所以0没有倒数”这个理由,拓展了我所提供给学生的知识内容。如果让我重新上这节课我会设计出更多的形式多样的练习让学生在练习中得到更大的提高。