总结是写给人看的,条理不清,人们就看不下去,即使看了也不知其所以然,这样就达不到总结的目的。那么我们该如何写一篇较为完美的总结呢?那么下面我就给大家讲一讲总结怎么写才比较好,我们一起来看一看吧。
高二数学知识点归纳总结篇一
如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。
二、定期重复巩固
即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。
三、科学合理安排
复习一般可以分为集中复习和分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。
四、重点难点突破
对所学的素材要进行分析、归类,找出重、难点,分清主次。在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点和易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。
五、复习效果检测
随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。检测时必须独立,限时完成,保证检测出的效果的真实性,如果存在问题,应该找到错误的根源,并适时采取补救措施进行校正。目前市场上练习册多如牛毛,请在老师的指导下选用。
高二数学知识点归纳总结篇二
一、集合、简易逻辑
1.集合;
2.子集;
3.补集;
4.交集;
5.并集;
6.逻辑连结词;
7.四种命题;
8.充要条件。
二、函数
1.映射;
2.函数;
3.函数的单调性;
4.反函数;
5.互为反函数的函数图象间的关系;
6.指数概念的扩充;
7.有理指数幂的运算;
8.指数函数;
9.对数;
10.对数的运算性质;
11.对数函数.12.函数的应用举例。
三、
数列1.数列;
2.等差数列及其通项公式;
3.等差数列前n项和公式;
4.等比数列及其通顶公式;
5.等比数列前n项和公式。
四、三角函数
1.角的概念的推广;
2.弧度制;
3.任意角的三角函数;
4.单位圆中的三角函数线;
5.同角三角函数的基本关系式;
6.正弦、余弦的诱导公式;
7.两角和与差的正弦、余弦、正切;
8.二倍角的正弦、余弦、正切;
9.正弦函数、余弦函数的图象和性质;
10.周期函数;
11.函数的奇偶性;
12.函数的图象;
13.正切函数的图象和性质;
14.已知三角函数值求角;
15.正弦定理;
16.余弦定理;
17.斜三角形解法举例。
五、平面向量
1.向量;
2.向量的加法与减法;
3.实数与向量的积;
4.平面向量的坐标表示;
5.线段的定比分点;
6.平面向量的数量积;
7.平面两点间的距离;
8.平移。
六、不等式
1.不等式;
2.不等式的基本性质;
3.不等式的证明;
4.不等式的解法;
5.含绝对值的不等式。
七、直线和圆的方程
1.直线的倾斜角和斜率;
2.直线方程的点斜式和两点式;
3.直线方程的一般式;
4.两条直线平行与垂直的条件;
5.两条直线的交角;
6.点到直线的距离;
7.用二元一次不等式表示平面区域;
8.简单线性规划问题;
9.曲线与方程的概念;
10.由已知条件列出曲线方程;
11.圆的标准方程和一般方程;
12.圆的参数方程。
八、圆锥曲线
1.椭圆及其标准方程;
2.椭圆的简单几何性质;
3.椭圆的参数方程;
4.双曲线及其标准方程;
5.双曲线的简单几何性质;
6.抛物线及其标准方程;
7.抛物线的简单几何性质。
九、直线、平面、简单何体
1.平面及基本性质;
2.平面图形直观图的画法;
3.平面直线;
4.直线和平面平行的判定与性质;
5.直线和平面垂直的判定与性质;
6.三垂线定理及其逆定理;
7.两个平面的位置关系;
8.空间向量及其加法、减法与数乘;
9.空间向量的坐标表示;
10.空间向量的数量积;
11.直线的方向向量;
12.异面直线所成的角;
13.异面直线的公垂线;
14.异面直线的距离;
15.直线和平面垂直的性质;
16.平面的法向量;
17.点到平面的距离;
18.直线和平面所成的角;
19.向量在平面内的射影;
20.平面与平面平行的性质;
21.平行平面间的距离;
22.二面角及其平面角;
23.两个平面垂直的判定和性质;
24.多面体;
25.棱柱;
26.棱锥;
27.正多面体;
28.球。
十、排列、组合、二项式定理
1.分类计数原理与分步计数原理;
2.排列;
3.排列数公式;
4.组合;
5.组合数公式;
6.组合数的两个性质;
7.二项式定理;
8.二项展开式的性质。
十一、概率
1.随机事件的概率;
2.等可能事件的概率;
3.互斥事件有一个发生的概率;
4.相互独立事件同时发生的概率;
5.独立重复试验。
选修ⅱ
十二、概率与统计
1.离散型随机变量的分布列;
2.离散型随机变量的期望值和方差;
3.抽样方法;
4.总体分布的估计;
5.正态分布;
6.线性回归。
十三、极限
1.数学归纳法;
2.数学归纳法应用举例;
3.数列的极限;
4.函数的极限;
5.极限的四则运算;
6.函数的连续性。
十四、导数
1.导数的概念;
2.导数的几何意义;
3.几种常见函数的导数;
4.两个函数的和、差、积、商的导数;
5.复合函数的导数;
6.基本导数公式;
7.利用导数研究函数的单调性和极值;
8.函数的最大值和最小值。
十五、复数
1.复数的概念;
2.复数的加法和减法;
3.复数的乘法和除法;
4.复数的一元二次方程和二项方程的解法。