人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
初三数学中考知识点归纳篇一
在年少学习的日子里,不管我们学什么,都需要掌握一些知识点,知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。还在为没有系统的知识点而发愁吗?以下是小编精心整理的初三数学中考知识点整理,仅供参考,大家一起来看看吧。
1.数轴
(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.
数轴的三要素:原点,单位长度,正方向。
(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)
(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
重点知识:
初中数学第一课,认识正数与负数!新初一的来~
2.相反数
(1)相反数的概念:只有符号不同的两个数叫做互为相反数.
(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
3.绝对值
1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。
①互为相反数的两个数绝对值相等;
②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.
③有理数的绝对值都是非负数.
2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
①当a是正有理数时,a的绝对值是它本身a;
②当a是负有理数时,a的绝对值是它的相反数﹣a;
③当a是零时,a的绝对值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
1、反比例函数的概念
一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的.取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质
反比例函数k的符号k>0k<0图像yo xyo x性质①x的取值范围是x0,
y的取值范围是y0;
②当k>0时,函数图像的两个分支分别
在第一、三象限。在每个象限内,y
随x 的增大而减小。
①x的取值范围是x0,
y的取值范围是y0;
②当k<0时,函数图像的两个分支分别
在第二、四象限。在每个象限内,y
随x 的增大而增大。
4、反比例函数解析式的确定
确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
5、反比例函数的几何意义
设是反比例函数图象上任一点,过点p作轴、轴的垂线,垂足为a,则
(1)△opa的面积.
(2)矩形oapb的面积。这就是系数的几何意义.并且无论p怎样移动,△opa的面积和矩形oapb的面积都保持不变。
矩形pcef面积=,平行四边形pdea面积=
二次函数的解析式有三种形式:
(1)一般式:
(2)顶点式:
(3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。
注意:抛物线位置由决定.
(1)决定抛物线的开口方向
①开口向上.
②开口向下.
(2)决定抛物线与y轴交点的位置.
①图象与y轴交点在x轴上方.
②图象过原点.
③图象与y轴交点在x轴下方.
(3)决定抛物线对称轴的位置(对称轴:)
①同号对称轴在y轴左侧.
②对称轴是y轴.
③异号对称轴在y轴右侧.
(4)顶点坐标.
(5)决定抛物线与x轴的交点情况.、
①△>0抛物线与x轴有两个不同交点.
②△=0抛物线与x轴有的公共点(相切).
③△<0抛物线与x轴无公共点.
(6)二次函数是否具有、最小值由a判断.
①当a>0时,抛物线有最低点,函数有最小值.
②当a<0时,抛物线有点,函数有值.
(7)的符号的判定:
表达式,请代值,对应y值定正负;
对称轴,用处多,三种式子相约;
轴两侧判,左同右异中为0;
1的两侧判,左同右异中为0;
-1两侧判,左异右同中为0.
(8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。
(9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为,在顶点处翻折后的解析式为(a相反,定点坐标不变)。
(10)结论:①二次函数(与x轴只有一个交点二次函数的顶点在x轴上δ=0;
②二次函数(的顶点在y轴上二次函数的图象关于y轴对称;
③二次函数(经过原点,则。
(11)二次函数的解析式:
①一般式:(,用于已知三点。
②顶点式:,用于已知顶点坐标或最值或对称轴。
(3)交点式:,其中、是二次函数与x轴的两个交点的横坐标。若已知对称轴和在x轴上的截距,也可用此式。
s("content_relate");【初三数学中考知识点整理】相关文章:
中考数学重点知识点整理
12-27
中考数学知识点总结整理
12-23
初中数学中位线的中考知识点整理
11-11
中考政治知识点整理
11-15
初中数学圆柱体的中考知识点整理
11-12
初三物理知识点整理
10-12
中考语文知识点整理汇总
01-27
初中数学长方形的中考知识点整理
11-11
高考数学重要知识点整理
12-27
初三化学知识点整理
10-22