作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。大家想知道怎么样才能写一篇比较优质的教案吗?下面是小编带来的优秀教案范文,希望大家能够喜欢!
数学高一教案电子版篇一
1、理解一次函数和正比例函数的概念,以及它们之间的关系。
2、能根据所给条件写出简单的一次函数表达式。
1、经历一般规律的探索过程、发展学生的抽象思维能力。
2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。
1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。
2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。
1、一次函数、正比例函数的概念及关系。
2、会根据已知信息写出一次函数的表达式。
1、新课导入
有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,
请看:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。
(1)计算所挂物体的质量分别为1千克、 2千克、 3千克、 4千克、 5千克时弹簧的长度,
(2)你能写出x与y之间的关系式吗?
分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。
2、做一做
某辆汽车油箱中原有汽油 100升,汽车每行驶 50千克耗油 9升。你能写出x与y之间的关系吗?(y=1000。18x或y=100 x)
接着看下面这些函数,你能说出这些函数有什么共同的特点吗?上面的几个函数关系式,都是左边是因变量,右边是含自变量的代数式,并且自变量和因变量的指数都是一次。
3、一次函数,正比例函数的概念
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
4、例题讲解
例1:下列函数中,y是x的一次函数的是( )
①y=x6;②y= ;③y= ;④y=7x
a、①②③ b、①③④ c、①②③④ d、②③④
分析:这道题考查的是一次函数的概念,特别要强调一次函数自变量与因变量的指数都是1,因而②不是一次函数,答案为b
数学高一教案电子版篇二
1明确空间直角坐标系是如何建立;明确空间中任意一点如何表示;
2 能够在空间直角坐标系中求出点坐标
1平面直角坐标系建立方法,点坐标确定过程、表示方法?
2一个点在平面怎么表示?在空间呢?
3关于一些对称点坐标求法
关于坐标平面 对称点 ;
关于坐标平面 对称点 ;
关于坐标平面 对称点 ;
关于 轴对称点 ;
关于 对轴称点 ;
关于 轴对称点 ;
例1在长方体 中, , 写出 四点坐标
讨论:若以 点为原点,以射线 方向分别为 轴,建立空间直角坐标系,则各顶点坐标又是怎样呢?
变式:已知 ,描出它在空间位置
例2 为正四棱锥, 为底面中心,若 ,试建立空间直角坐标系,并确定各顶点坐标
练1 建立适当直角坐标系,确定棱长为3正四面体各顶点坐标
练2 已知 是棱长为2正方体, 分别为 和 中点,建立适当空间直角坐标系,试写出图中各中点坐标
1 关于空间直角坐标系叙述正确是( )
a 中 位置是可以互换
b空间直角坐标系中点与一个三元有序数组是一种一一对应关系
c空间直角坐标系中三条坐标轴把空间分为八个部分
d某点在不同空间直角坐标系中坐标位置可以相同
2 已知点 ,则点 关于原点对称点坐标为( )
a b c d
3 已知 三个顶点坐标分别为 ,则 重心坐标为( )
a b c d
4 已知 为平行四边形,且 , 则顶点 坐标
5 方程 几何意义是
1 在空间直角坐标系中,给定点 ,求它分别关于坐标平面,坐标轴和原点对称点坐标
2 设有长方体 ,长、宽、高分别为 是线段 中点分别以 所在直线为 轴, 轴, 轴,建立空间直角坐标系
⑴求 坐标;
⑵求 坐标;
数学高一教案电子版篇三
教学目标
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
教学重难点
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
教学过程
等比数列性质请同学们类比得出。
【方法规律】
1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。
2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数
a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)
3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决。
【示范举例】
例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。
(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=。
例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。
例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。
数学高一教案电子版篇四
一、教学目标
1、知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。
2、过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3、情感态度与价值观:提高学生空间想象力,体会三视图的作用。
二、教学重点:画出简单几何体、简单组合体的三视图;
难点:识别三视图所表示的空间几何体。
三、学法指导:
观察、动手实践、讨论、类比。
四、教学过程
(一)创设情景,揭开课题
展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。
(二)讲授新课
1、中心投影与平行投影:
中心投影:光由一点向外散射形成的投影;
平行投影:在一束平行光线照射下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:
正视图:光线从几何体的前面向后面正投影,得到的投影图;
侧视图:光线从几何体的左面向右面正投影,得到的投影图;
俯视图:光线从几何体的上面向下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规则:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;
高平齐:正视图与侧视图的高度相等,且相互对齐;
宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:
正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:
5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
数学高一教案电子版篇五
1、巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系
2、了解集合的运算包含了集合表示法之间的转化及数学解题的一般思想
3、了解集合元素个数问题的讨论说明
通过提问汇总练习提炼的形式来发掘学生学习方法
培养学生系统化及创造性的思维
[教学重点、难点]:会正确应用其概念和性质做题 [教 具]:多媒体、实物投影仪
[教学方法]:讲练结合法
[授课类型]:复习课
[课时安排]:1课时
[教学过程]:集合部分汇总
本单元主要介绍了以下三个问题:
1,集合的含义与特征
2,集合的表示与转化
3,集合的基本运算
一,集合的含义与表示(含分类)
1,具有共同特征的对象的全体,称一个集合
2,集合按元素的个数分为:有限集和无穷集两类
数学高一教案电子版篇六
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
集合的基本概念及表示方法
运用集合的两种常用表示方法——列举法与描述法,正确表示
一些简单的集合
新授课
1课时
多媒体、实物投影仪
1、集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明
1、简介数集的发展,复习公约数和最小公倍数,质数与和数;
2、教材中的章头引言;
3、集合论的创始人——康托尔(德国数学家)(见附录);
4、“物以类聚”,“人以群分”;
5、教材中例子(p4)
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。
定义:一般地,某些指定的对象集在一起就成为一个集合。
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合记作n,
(2)正整数集:非负整数集内排除0的集记作nx或n+
(3)整数集:全体整数的集合记作z,
(4)有理数集:全体有理数的集合记作q,
(5)实数集:全体实数的集合记作r
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集记作nx或n+q、z、r等其它
数集内排除0的集,也是这样表示,例如,整数集内排除0
的集,表示成zx
3、元素对于集合的隶属关系
(1)属于:如果a是集合a的元素,就说a属于a,记作a∈a
(2)不属于:如果a不是集合a的元素,就说a不属于a,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如a、b、c、p、q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈a颠倒过来写
1、教材p5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数(不确定)
(2)好心的人(不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|,所组成的集合,最多含(a)
(a)2个元素(b)3个元素(c)4个元素(d)5个元素
5、设集合g中的元素是所有形如a+b(a∈z,b∈z)的数,求证:
(1)当x∈n时,x∈g;
(2)若x∈g,y∈g,则x+y∈g,而不一定属于集合g
证明(1):在a+b(a∈z,b∈z)中,令a=x∈n,b=0,
则x=x+0x=a+b∈g,即x∈g
证明(2):∵x∈g,y∈g,
∴x=a+b(a∈z,b∈z),y=c+d(c∈z,d∈z)
∴x+y=(a+b)+(c+d)=(a+c)+(b+d)
∵a∈z,b∈z,c∈z,d∈z
∴(a+c)∈z,(b+d)∈z
∴x+y=(a+c)+(b+d)∈g,
又∵=
且不一定都是整数,
∴=不一定属于集合g
1、集合的有关概念:(集合、元素、属于、不属于)
2、集合元素的性质:确定性,互异性,无序性
3、常用数集的定义及记法
一、整体把握、抓大放小
拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的题目,一定要拿到应得的分数。
二、确定每部分的答题时间
1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。
2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。
三、碰到难题时
1、你可以先用“直觉”最快的找到解题思路;
2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;
3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。
4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。
四、卷面整洁、字迹清楚、注意小节
做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。
一、课后及时回忆
如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。
二、定期重复巩固
即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。
三、科学合理安排
复习一般可以分为集中复习和分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。