在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
四下三角形的内角和教学反思三角形的内角教学反思篇一
上课之前,通过课件出示一个谜语,引导学生猜出谜底,从而揭晓今天主题——三角形。告诉学生我们今天继续来探究三角形的奥秘。首先课件显示有一个大三角形和一个小三角形在辩论。大三角形理直气壮的说:“我的内角和比你大”!小三角形无辜的说道:“是这样吗”?通过这样一组对话,使学生萌生了想要探究答案的欲望,激发了学生的学习兴趣。
学生们拿出课前准备的三个三角形,要求学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。
这节课在练习的安排上,我注意把握练习层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角度数,求另一个角。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决,在没有告知直角三角形的另一个角时,如何求出第三个角。
通过一节课的学习,同学们基本掌握三角形内角和的知识,并能运用知识点进行习题练习。小组合作也激发了学生们的学习兴趣,效果不错!
四下三角形的内角和教学反思三角形的内角教学反思篇二
1、你能用哪些方法验证“三角形的内角和是180°”这一猜想?至少想出两种。写出具体的操作过程。
3、准备三个锐角三角形,三个直角三角形,三个钝角三角形和一张正方形纸。
1、什么是内角?
5、用正方形纸折几次,才有8个三角形呢?
1、孩子们想到的验证内角和的方法局限在:用计算直角三角形的各个角的度数的和;画一个三角形,量出每个角的度数再计算。只有一人(季##提到用折的方法来验证,看来,孩子们还是不会读数学课本,没有看懂课本上图示的折的过程,要加强阅读课本的指导,这是以前忽视阅读文本带来的不良结果,直接影响了孩子们的自学能力。
2、我设计的预习题,没能从学生的实际出发,我觉得孩子们已经知道了三角形的内角和是180°,就没有引导他们去理解什么叫内角?这也是孩子们不知如何去验证内角和的一个原因。
孙##和陈##两个有些内向的女孩子,在课堂上能主动站起来说出自己的想法,带着自己的三角形到前面来演示如何用折的`方法验证三角形的内角和是180°。刘##今天能主动补充别人的回答。
每一个孩子都充满着无穷的潜力,他们暂时的落后,是因于学习对象没有激起他们的兴趣,是因为缺少一个能挖掘潜力的人!
四下三角形的内角和教学反思三角形的内角教学反思篇三
我执教的《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《多边形的内角和》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习和掌握三角形的内角和是180°这一规律具有重要意义。
怎样提供一个良好的探究平台,使学生有兴趣去研究三角形内角的和呢?爱因斯坦说过:“问题的提出往往比解答问题更重要”,因此这节课在复习旧知“三角形的特征”后,我引出了研究问题“三角形的内角指的是什么?”“三角形的内角和是多少?”“你猜三角形的内角和是多少度?你是怎么猜的?这个问题一抛出去马上激发学生的学习热情。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。
《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我觉得本课的重点就是要让他们知道“知其所以然”,因此接着就让学生分组讨论:有什么办法可以验证得出这样的结论。学生会提出度量、折一折的方法,然后让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法或者用折一折的方法,通过小组合作交流,让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的合作探究精神,有意识地培养学生逻辑推理能力,增强了语言表达能力,并潜移默化中渗透了一个重要数学思想―――转化思想。
在猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。
研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是基础练习题:已知三角形中两个内角的度数,求另一个角;已知一个角的度数(等腰三角形中顶角或底角的度数),让学生应用结论求另外的一个内角的度数;一个角的度数都不交代,给出三角形的特征(等边三角形),求这个三角形每个角的度数。第二层练习是让学生用学过的知识解决生活中实际问题的内角度数。第三层练习是拓展深化练习,让学生运用已有经验去判断思索,如:“大三角形的内角和比小三角的内角和大”对吗?“你能画出两个直角三角形吗?为什么?等问题。体现习题设计的坡度性与层次性,让不同的学生都各有所收获,关注了学生差异问题。
在教学中,由于我对学生了解的不够充分,让学生自己想其它的验证方法,难度较大,浪费了大量时间,拖课了。因此在设计教案时要深入了解学生,反复研究切合实际的教学设计,这是我在以后的备课中要注重的地方。
四下三角形的内角和教学反思三角形的内角教学反思篇四
1、你能用哪些方法验证“三角形的内角和是180°”这一猜想?至少想出两种。写出具体的操作过程。
3、准备三个锐角三角形,三个直角三角形,三个钝角三角形和一张正方形纸。
1、什么是内角?
5、用正方形纸折几次,才有8个三角形呢?
1、孩子们想到的验证内角和的方法局限在:用计算直角三角形的各个角的度数的和;画一个三角形,量出每个角的度数再计算。只有一人(季##提到用折的方法来验证,看来,孩子们还是不会读数学课本,没有看懂课本上图示的折的过程,要加强阅读课本的指导,这是以前忽视阅读文本带来的`不良结果,直接影响了孩子们的自学能力。
2、我设计的预习题,没能从学生的实际出发,我觉得孩子们已经知道了三角形的内角和是180°,就没有引导他们去理解什么叫内角?这也是孩子们不知如何去验证内角和的一个原因。
孙##和陈##两个有些内向的女孩子,在课堂上能主动站起来说出自己的想法,带着自己的三角形到前面来演示如何用折的方法验证三角形的内角和是180°。刘##今天能主动补充别人的回答。
每一个孩子都充满着无穷的潜力,他们暂时的落后,是因于学习对象没有激起他们的兴趣,是因为缺少一个能挖掘潜力的人!
四下三角形的内角和教学反思三角形的内角教学反思篇五
三角形内角和,是在学生认识了三角形的特点和分类的基础上进一步对三角形内角之间的关系的学习和探究。学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,在这个过程中孩子们知道了内角的概念,但是他们却不知道怎样才能得出三角形的内角和是180度。因此本节课我提出的研究的重点是:验证三角形的内角和是180度。
在上课前我通过故事情境导入:“大三角形”将军和“小三角形”将军内角和一样大吗?引起同学们思考,激发出学生探究学习的热情。接着学生讨论:有什么办法可以验证得出这样的结论。学生首先提出度量角的度数的方法,之后通过测量角的度数,发现有的三角形内角和是180°,有的非常接近180°,让学生发现测量角的度数时容易产生误差,方法具有一定的局限性。之后学生通过撕角拼一拼的方法进行验证。通过“合作探究,实验论证”生动地诠释了新教育的基本理念。
本课新知识传授很好的把握三个环节:
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养“空间观念”和动手操作能力。让学生独立思考,教师引导学生讨论验证方法,掌握要领。还有什么办法可以验证得出这样的结论?学生就发挥想象,提出度量、折一折、拼一拼等方法。
让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形,通过撕拼角的方式,小组合作交流,验证猜想,得出任意三角形的内角和是180°的结论。
“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是学生“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,鼓励学生发挥想象,鼓励学生动手操作,鼓励学生验证猜想,培养学生“空间观念”。我在归纳总结环节,有意识地培养学生的推理能力,逻辑思维能力,增强了语言表达能力。最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,强化了学生对这节课的掌握。
作为一名新教师,在接下来的教学中,我要学会大胆放手,轻松自己,发展学生。放手让学生自己去思考去做,那怕他想错了做错了,只有这样他们才有机会知道自己错了错在哪儿,给他们更自由更广阔的发展空间,也只有这样才能唤起他们思考的欲望,也只有这样才能扬起他们创造的风帆!