范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
圆的面积教学反思免费篇一
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。
这几天一直对圆的进行研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。本节“圆的面积”的教学,力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展。
本课开始,先与圆的周长与圆的面积比较不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
通过上面计算平行四边形面积的方法,探究圆的面积,如何计算圆的面积,学生有点不知所措。现在回想起来,应该先我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能能让学生解答出我的问题。通过学生观看一个个的图片,从8等份、16等份、32等份分圆再把圆片拼起来,从一个不规则图形,到近似是的一个长方形。再在这个长方形让学生中找到圆的周长,从4等份拼成的不规则图形到32图形拼成的近似一个长方形,从中得出规律。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,可能得到长方形的面积可能近似地看作圆的面积。最终推导出圆的面积公式。
反思,在这一节课中,我只是将圆面积推导过程,只是用学具的形式展现给同学们看,如果能让同学自己动手做一下,将一个圆平均分成32份,再自己拼一拼。这样学生对于圆的面积的知识认识会更加深刻。
在这一节课中,我总觉得缺乏学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。只是通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,在自己地引导中推导出圆的面积计算公式。学生思维在交流中虽有碰撞,在碰撞中发散,在想象中得以提升。但总觉得不够。在以后这一类的教学中,应该让思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。在细节的设计还要精心安排。
圆的面积教学反思免费篇二
《圆的面积》是人教版小学数学六年级上册的内容,而苏教版则安排为五年级下册的内容,对于高学段的学生来说,在学习本课时之前,已经积累了大量关于圆的表象认识。而在之前的学习中,孩子们也经历了《圆的认识》和《圆的周长》的学习,掌握了圆的周长公式,为本课时的教学做好了铺垫。
根据这一课时的内容特点,我在设计课堂教学时,特意给学生安排了小组合作探讨和个人尝试推导解决问题的设计,让学生主动参与到学习中,促成学习与活动的相结合。基于对课程特点的认识,我在设计中把教学目标设计为:
1、理解圆的面积的含义;理解和掌握圆的面积公式。
2、经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
通过与学生的努力,快乐地结束了本课时的学习,在这个过程中,我有以下几点的体会:
在设计本课时的时候,考虑到知识的特点,主要培养学生通过原来的转化知识应用在新知识中,发展学生的概括能力,于是,我把课堂的主体交还给学生,让他们在课堂的一开始,就进入到数学的领域,通过给他们自主地猜想,形成问题,并趁机引导学生:如何解决这个问题呢?学生有了自己的猜想,于是,集中地精神更高。当在探索中遇到困难后,我及时给予集体的讨论并让他们在小组内互相帮助,最后达到共同解决的目的。可有一点让自己不太满意的地方,就是学生对新知识的理解不能及时到位,也可能对自己的信心不足,课堂中的问题反馈学生的积极性不足。在总结圆拼长方形的时候,有同学有这样的一个问题:“老师,我想把它拼成三角形或者梯形,可以吗?”由于备课考虑不太周全,对于这个问题,我一时没能回答出来,只能敷衍了过去。除此之外,学生在操作中剪开圆的时候,有些剪断了,在拼的时候就多费了时间。
不过,在整个过程中,我还是给了学生充分的时间和空间,也注意了自己的引导作用,学生在自己的动手操作中还是能体会其中的探索乐趣,学会了知识,发展了自己的能力。
由于在课前有了充分的思考,所以在每一个环节中的练习都有了充分的准备,在导入——猜想——操作——推导——验证,再回到练习,让学生的认识从浅到深,从具体到抽象,符合他们的认识发展规律。针对这个规律,我把练习也设计成层层递进的形式,从巩固公式方法——生活现象——实际测量——拓展思考,逐步提升学生的知识能力,对有挑战性的题目,我加入题后的提示,让学生用自己的理解结合小组的合作,解决问题的同时,发展了学生观察、分析和应用的能力。可能个别学生在学习上有一定的困难,我没能及时地兼顾到,导致在课后有几名学生对课时练习还没有完全掌握的现象。另外,由于课前没有完全设想好练习时间的安排,导致后面的题目没能及时顺利地完成。
数学是思维的体操。当学生在思考、拼的过程中应多给学生一些时间,多一些思维的空间,这样的课才丰实。因在课件演示组拼的过程中动作太快,没及时说说剪拼的方法。导致学生在操作时出现了很大的问题,如全剪断了,拼出费时多等问题,这样也致使练习的时间就更少了。
对于本课时来说,学生的操作时本课时主要采用的教学手段,学生在这个过程中都能全程参与进去,但如果不注意合理分配时间的话,会给教学带来一定的影响,希望能给其他老师一个参考。
经过实践教学后,让我明白了数学课堂有时并不需要由老师一手包办,有些时候,可以选择适当的时机,把学习的主导权交还给学生,对让他们主动参与进课堂,享受探索学习的快乐。
圆的面积教学反思免费篇三
通过对《圆的面积》这一知识的学习和学生的作业来看,大部分学生对怎样求圆的面积这一方法基本掌握,能利用圆的面积计算公式解决简单的问题。但仍有部分学生存在着以下问题:
一是对圆面积的推导公式的过程还没有完全理解。特别是“长方形的长相当于圆的()”,这一问题中,填写的答案有“周长”、“长”、“直径”,正确的答案是“周长的一半”。如果学生对推导过程不理解时,就无法建立起圆的面积的计算公式。
二是将推导的过程用字母表示时,缺少对πr2的构成的讲解,个别学生理解成了π2r2。虽然老师反复讲解r2和r×2的区别,但仍有相当一部分学生在计算半径的平方时,直接用半径乘2。
三是细节方面仍没有注意。在同一个问题中既要计算周长,又要计算面积时,有的忘了带单位,有的直接不写单位,一半左右的学生对单位不区分。
四是对变形的图形理解有误。如求半圆的面积及组合图形的面积时,不会把组合图形正确的分割成几个简单的图形,即使能正确的分割,没有找对有效的数据,只是把几个看似有关联的数据拼凑在一起,敷衍了事。
针对这一现象,本人认为需要从以下几方面着手训练强化:
一是将抽象的圆面积公式的推导变成形象化,利用课件、演示器进行仔细的演示,让学生细致的观察,特别是将圆转化成长方形的过程,知道“等积变形”的原理,再看长方形的长与圆周长的变化关系。
二是对数字与字母相乘的关系进行举例说明,通过多练,让学生找到r2和r×2的区别,再由结果的不同,让学生对r2和r×2有正确的理解。
三是加强基本的要求,针对解题的格式,细节再进行要求。
四是加强对组合图形的认识,能对组合图形进行正确的分解,能分解成最常见、最基本的简单图形,根据简单图形的基本特征再进行解答。将图形分解的过程中,要注意对有效数据的收集和分析,有些数据在图形分解过程发生了变化,必须找准最有效有数据,才能进行最正确的计算。
圆的面积教学反思免费篇四
数学学习,不仅是数学知识的学习,更重要的是数学思想与方法的学习。
在讲授《圆的面积》一课时,由于学生熟悉了研究平面图形的思路:认识特征——周长——面积,所以范老师采用了复习旧知、直奔主题的引入方式,既有利于学生形成研究问题的思路,把新知识纳入已有的认知结构,又简洁明快,结构紧凑,为学生后面的探究提供了时间上的保证。
圆与学生以前探究的长方形、正方形、平行四边形、三角形、梯形等都有所不同,因为它是平面上的曲线图形,因此当范老师提出“怎么求圆的面积呢”,学生并不能马上找到解决的方法。有的学生一开始无从下手,这时,把时间给学生,把探究的空间给学生,充分相信学生能行,引导学生从头脑里检索已有的知识和方法,让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来了,沟通了知识之间的联系,促成了迁移。
范老师能够深入了解学生探究圆面积的心理,知道有的学生脑子里不是一片空白的,尊重学生的原创思维。
通过探究,通过剪拼把圆转化成近似的平行四边形。引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。
当动手操作已经无法再完成时,范老师用课件动态演示,弥补操作与想象的不足,帮助学生进一步感知平均分的份数越多,剪拼成的图形越来越像平行四边形。围绕着“怎样更像”进行了一次又一次的追问,让学生充分地体验了“极限思想”。
本课重点是引导学生去经历探究圆的面积公式的过程,范老师充分体验“转化”和“极限思想”,所以安排比较少,虽然这节课只设计了几个基本练习来检验学生对圆的面积的理解和掌握程度,但这并不妨碍这节课的精彩。
圆的面积教学反思免费篇五
“圆的面积”是在学生掌握了面积的含义及长方形、正方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。本课时的教学设计,我特别注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有知识出发学习数学,理解数学。本节教学主要突出了以下几点:
在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。
学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,学生动手剪拼好后,选择其中2~3组进行观察对比,发现如果把一个圆形平均分成的份数越多,这个图形就越小。平行四边形或长方形。再对比圆形和这个拼成的图形之间的关系。通过剪、拼图形和原图形的对比,将圆与拼成图形有关的部分用彩色笔标出来,形成鲜明的对比,并为后面推导面积的计算公式作了充分的铺垫。
通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形、平行四边形的探索活动中来,从而感受知识的形成。
结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用能力。在每一道练习题的设置上,都有不同的目的性,注重每个练习的指导侧重点。
但本节课的新课时间过长,使得练习不够充分,还需要在以后的教学中加以注意。
圆的面积教学反思免费篇六
圆面积的教学分估算、推导和应用三部分,重点是圆面积公式的推导和应用,在推导过程中渗透“化曲为直”的转化思想,重视学生动手操作能力的培养。新学期、新班级、新学生,我选择了新教法。反思本节课的教学,以下几方面较以前有所改进:
关注学生已经的知识基础,重视“转化”思想的渗透。由于圆是平面上的曲线图形,受思维定势影响,学生难以转化成学过的平面图形,所以在学习新知前,先引导学生回忆长方形、平行四边形等平面图形面积公式的推导方法,唤醒学生已有的知识积淀,再现“转化”是探究新识、解决数学问题的最常用的好方法,为推导圆面积公式做了很好的铺垫。同时结合上节课面积的估算教学,让学生经明确:只要把圆内接正方形分割的边数越多,就越接近圆,这样很自然地引导学生思考转化的方法。
动手操作和体验让课堂富有了灵动的色彩。由于没有学具,课前就分组让学生动手把所画的圆等分成不同的等份,课堂上学生便有了更多的操作、交流空间。学生为了验证自己的猜想,操作过程更是小心翼翼,生怕有半点闪失,操作结果:有的拼成三角形、有的拼成梯形、有的拼成平行四边开、有的拼成长方形。拼的过程让学生亲历、体验了“化曲为直”的思想,同时明确了:把一个圆平均分成的份数越多,拼成的图形就越接近长方形;拼成后的图形与圆的面积相等,只是周长发生了变化。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,给课堂增添了灵动的色彩。
自行设置习题,学生表现多姿多彩。推导完公式以后,我并没有直接出示例题,而是让学生根据公式说出求圆面积必须具备的条件及应该注意的问题(已知半径、一个数平方的计算)。紧接着让学生说出一步、二步、三步计算圆面积所必备的条件,这种练习方式不仅复习了以前学过的知识,而且更有效地激活了学生的思维,让学生的思维在交流中碰撞,在碰撞中发散,在想象中得以提升,同时也为下节课的学习打响了前奏。
不足:
1、学生方面:有些学生在计算一个数的平方时,会算成用一个数乘以2;对于整十数、整百数的平方计算,出现多零或少零的现象;对于较大数的计算不会进行简便计算;有学生使用计算器;学困生有抄作业现象。
2、教师方面:课堂评价语言较单一;板书字体有些草,忘记板书课题。
措施:
1、加强学生口算基本功训练,培养运算技能、使其掌握运算技巧;经常与家长联系,提醒学生不用计算器;加强对学困生的辅导。
2、丰富自己的评价语言,注意评价语言的激励性和导向性。
圆的面积教学反思免费篇七
《圆的面积》这节课是北师大版六年级数学第一单元的一个重难点知识。教学中对圆面积公式的推导过程中,我运用多媒体辅助,小组合作,个人演示的综合教学。对于本节课的备课我做了很多的工作,下载课件,找教具…..很顺利的完成了教学任务,但课后结合学生的练习,课堂反应及自己的感悟,进行一下反思,作为自己今后课堂教学的提高改进。
这节课一开始我直接打开多媒体,和学生一起回忆了学生以前学过的推导平行四边形和三角形面积公式的过程,以此导课,(想:五年级刚学的应该会。)优点:学生课堂注意力集中,(农村小学上课很少用多媒体)。缺点:这个过程其实学生并没有来得及回忆,对播放的内容并没有应有的知识准备,因此并没有动脑思考,导课成了过程。在今后的教学中一定要备学生,让学生有牢固的知识准备,培养学生提前预习的好习惯,多媒体的使用要在学生思考,教师小结讲解中出示,激发学生从想到看再到想。
这节课中对圆的“化曲为直”是学生不易突破的地方,我先让学生小组合作探究学习,讨论如何把圆转化成已学图形。在这里耽搁了很多时间,当一个组学生将圆转换成平行四边形时(可能是提前看了课本),我进行了表扬,没留更多时间让学生探索,虽说学生后来都那样推导了完成了课本要求的推导,但没有孩子提出圆还可以转换成三角形,长方形的这些情况。让我觉得是我操之过急了,如果这时教师能给以及时的启发点拨,让学生就可以得到拔高,扩大学习探索的思路。在今后的教学中作为教师一定要注重培养学生的创新意识,注重个性差异。
这节课的最后我让学生拿出学具将刚才小组合作的推导过程每人演示一遍,目的是加强理解,巩固所学,这时我的提问让一个学生没回答上来,我很恼火,觉得用了多媒体演示,小组合作交流,个人演示,竟然不会,很失望,弄的学生尴尬。现在想到学生当时的眼神,我觉得自己缺少了耐心,忽视了差异性,今后的教学中我一定要把握好自己的情绪,不能因为自己用心教了就要求每一位学生都能当堂理解运用。
教学就是实实在在的培养人的过程,作为教师的我一定要为学生而教学不能一味的完成教学任务。
圆的面积教学反思免费篇八
圆是最常见的图形之一,它是最简单的曲线图形。学生初步感知当正多边形的边数越来越多时,这个正多边形就会越来越接近圆。透过对圆的研究,使学生初步认识到研究曲线图形的基本方法,借助直线图形研究曲线图形,渗透了曲线图形与直线图形的关系。从“以旧引新”中渗透转化的思想方法;从“动手操作”中渗透“化曲为直”的思想方法;从“探究演变过程”中,渗透极限的思想及猜想与实验验证的思想方法。
俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下方探究圆的面积计算的方法奠定基础。
在凸现圆的面积的好处以后,透过比较复习的平面图形的面积推导方法,让学生大胆猜测圆的面积怎样推导。学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,也能够拼成三角形和梯形。学生动手剪拼好后,选取其中2~3组进行观察比较,发现如果把一个圆形平均分成的份数越多,这个图形就越接近了平行四边形或长方形。这个环节的设计也是“极限”思想渗透的最好体验。三角形和梯形能够让学生自我下课后推导。
再比较圆形和这个拼成的图形之间的关系。透过剪、拼图形和原图形的比较,将圆与拼成图形有关的部分用彩色笔标出来,构成鲜明的比较,并为后面推导面积的计算公式作了充分的铺垫。
透过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,贴合学生的认知水平。透过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形、平行四边形(拓展到三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索潜力、分析问题和解决问题的潜力得到了提高。
结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不一样的层应对学生的学习状况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际资料,让这节课所学的资料联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用潜力。在每一道练习题的设置上,都有不一样的目的性,教师注重了每个练习的指导侧重点。
本节课运用了多媒体课件演示辅助教学手段。多媒体教学最大的特点是有助于突出教学重点,分散教学难点。计算机具有声、光、色、形,综合表现潜力强,透过图像的翻滚、闪烁、重复、定格、色彩变化及声响效果等能给学生以新奇的刺激感受,运用它能吸引学生的注意力,激发学生的学习兴趣,调动学生的用心性、主动性、创造性。
学生是活泼好动,追逐事物的新奇,自控潜力差。他们的注意力往往取决于外界环境的刺激,带有明显的情绪色彩。只要一点击鼠标,超多的演示透过颜色的比较,图象的闪烁,声音的变化,引起学生有意注意,不仅仅准确展现了变换的过程,更为学生的思考和探究作出了提示。这样,教学中教师能够充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与获取知识的全过程,主动地探求知识,强化学生的参与意识,促进学生主动发展,提高课堂教学的有效性。
课还让学生亲自动手体验剪拼转化的过程,既培养了学生转化的数学学习方法,又培养了学生的动手潜力,想象潜力和创造潜力。亲身体会学习数学的乐趣。
圆的面积教学反思免费篇九
“圆的面积”在学生掌握面积的含义和矩形、正方形等平面图形的面积计算方法,理解圆并计算圆的周长的基础上进行教学。在本课程的教学设计中,我特别注重遵循学生的认知规律,关注学生从生活经验和已有知识中获取知识、学习数学和理解数学的思维过程。本节的教学主要突出以下几点:
首先,在学习新知识之前,引入新旧并渗透“变换”的思想,引导学生回忆以前探索矩形、平行四边形、三角形和梯形面积公式的推导方法,引导学生发现“转化”是探索数学知识的新途径,是解决数学问题的好方法,为探索圆的面积计算方法奠定了基础。
其次,大胆猜测,激发探索。
在强调圆面积的含义后,我让学生猜测圆面积可能与什么有关。当学生猜测圆的面积可能与圆的半径有关时,设计实验验证:画一个以正方形边长为半径的圆,用计算正方形的方法计算圆的面积,探索圆的面积大约是正方形的几倍。这一信息在旧教科书中不可用。学生的好奇心和求知欲得到充分调动,这些正是他们进一步开展探究活动的“根植”。
第三,手工切割和拼写,体验“学生猜测后,将歌曲变为直线,取出两张同样大小的准备好的光盘,将其中一张分成几个部分,然后拼成平行四边形或矩形。学生手工切割拼图后,选择2~3组进行观察比较,发现如果一个圆被均匀地分成更多的部分,那么图形越接近图形的平行四边形或矩形。然后比较圆与图形之间的关系。比较切割后,拼图形状与原始图形、与圆相关的部分和组合图形用彩笔进行标记,形成清晰的对比,为以后推导面积计算公式打下了充分的基础。
四、演示操作,感受知识的构成
通过观察、比较和分析,找出圆的面积、周长和半径与组装的近似矩形的面积、长度和宽度之间的关系,并让学生推导出圆的面积计算公式。这样,从帮助到投入,从现象到本质,学生将始终参与如何将圆转化为矩形和平行四边形的探索活动,从而感受知识的构成。
v.分层实践与经验应用价值
结合教材中的实例,设计了三个层次的基本实践、改进实践和综合实践,从三个不同层次测试学生的学习情况。首先,基础练习巩固计算公式的应用,强调标准化的写作格式。第二,改进练习,收集身边的实际数据,使本课所学数据与生活联系起来,灵活运用。第三,综合练习不仅要把以前学过的知识(给定圆的周长,先求半径,再求圆的面积)联系起来,还要锻炼学生的综合应用能力。在每个练习题的设置上,他们有不同的目的,并注意每个练习的指导重点。
但是,该课程的新课时间太长,实践不足,需要在今后的教学中加以注意。
圆的面积教学反思免费篇十
这节《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生必须明确区分。首先利用课件演示课本上的圆形花坛,让学生直观感知绿色线条的轨迹是条封闭的曲线,它的长度是圆的周长,绿色曲线围成的圆面,它的大小叫圆的面积。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵。
明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,为新知的“再创造”做好知识的准备。根据需要选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。并强调在推导的过程中你发现图形的什么变了?(形状)什么没变?(面积),转化前后两个图形之间有什么关系?
根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。这个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。
根据发现,把圆等分成若干等份,小组合作,动手摆一摆,转化成学过的平面图形。让学生把课前把附页中的图剪下拼成的图拿出并观察它像什么图形?为什么说“像”平行四边形(或长方形)?让学生发表自己的意见,充分肯定学生的观察。并利用课件展示分别等分成8、16、32份拼成的图形,并一再强调在推导的过程中你发现圆的什么变了?(形状)什么没变?(面积),转化前后两个图形之间有什么关系?还展示学生的三个拼图,引导学生闭上眼睛,如果分成64、128等份呢?让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的长发形就愈像,就愈接近,完成另一个重要数学思想———极限思想的渗透。
长方形的面积学生都会计算:s=ab。引导学生观察长方形的长和宽与圆有什么样的关系:发现a=c/2 =πr b=r, 长方形的面积=圆的面积,从而推导出s=πr×r =πr2,强调r2表示两个r相乘,并利用课件展示它们的关系。
通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。
在学生已能把已知圆的r、d求面积的基础上设计这一环节的活动:2人小组合作拿出课前准备好的圆形纸片或圆柱形物体、绳子、尺子.想办法测量出你所需要的数据,求出圆形纸片或圆柱形物体横截面的面积是多少?通过动手操作,小组合作的形式完成本活动,通过参与学生的很多,发现学生的办法很多,有通过对折找直径、半径再求面积的,也有两人合作用绳子围住圆片一周,再用尺子量出圆的周长,通过周长求圆的半径,再求面积,我都肯定了学生的方法,同时我特别表扬最后一种方法,并说明理由:在生活中求树干的横截面的面积等圆柱形横截面的面积的物体时这种方法适用。
在课堂教学过程中,表扬有着十分重要的作用。因为从某种意义上说,几乎人人都有一种希望别人肯定、称赞自己的心理(尤其是这些小学生们,这种心理更为强烈),这种心理一旦得到满足,便会形成愉悦的`情感,产生巨大的精神力量,使自己那些受别人肯定和称赞的言行迅速的得到强化。因此,我在上课时都是想方设法从学生的言行中找到值得肯定和赞许的东西,不失时机地加以表扬,尽量满足学生的这种心理,以形成良性的教学循环。
总之,这节课以这样的教学形式进行教学,从课后学生完成的课后作业的正确率很高就可以知道效果非常好。但因为学校的场地及教学设备在课前临时做了很大的调整,所以我和学生都不适应,课堂活动显得拘束了很多,很多环节都放不开,在时间上我掌握得也不是很理想,介于此,我还在课前的预设(教案)中进行一些调整。
圆的面积教学反思免费篇十一
“圆的面积”一课,经过让学生积极主动参与知识的构成的全过程来获取知识,提高学生的归纳、推理的数学思维本事,把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。在课堂中教师如果将新课程的理念转化为实际的教学行为,有时就会体会到什么叫做“无心插柳柳成荫”。
1、课前提出教学目标。
教学目标的提出有利于学生明确本节课的教学意图,激发学生学习的需要,以便更好的参与到学习活动中去。在两个班的巡讲过程中,我深刻体会到这一点,当我提出“看到课题后,你们认为这节课我们要解决什么问题呢?”学生积极发言:“想解决圆的面积如何计算;想解决圆的面积的计算公式是如何推导的;想学习怎样计算圆的面积等等”。学习目标明确后,我发现两个班的孩子在研究的时候都井然有序,没有不明白该如何入手的,都明确自我在讨论什么,要解决什么问题。汇报的的时候都明白围绕着课前所提出的学习目标回答,没有乱说的,巡讲后我从实践中体会到:教学目标是课堂教学的出发点和最终归宿,教师仅有明确教学目标才能更好的驾御课堂;学生仅有明确学习目标才能积极参与,事半功倍。
2、教学形式上,应因材施教,不一样的班级和学生采取不一样的教学方法。
课堂中,每名学生都是我们的教育对象,不一样的班级,风格、特点也不一样。101班的学生比较安静,开始不十分敢发言,于是在复习以前学过的基本图形的面积推导时,我先回忆各种图形的面积推导过程,孩子们说得很好,我也大加赞赏,等他们慢慢熟悉我后,我利用小组讨论来活跃气氛,效果不错,总结时发言的同学多了起来,回答也很到位。98班的学生很活跃,思维快,都抢着举手,学生和我配合也默契。我把知识完全放手交给他们自我解决,,把所能想到的方法都用上了:讨论、自学、猜想。学生们都能积极参与,汇报时公式的推导过程说的很完整,练习题计算起来也不费劲。应当说98班是巡讲中讲的最梦想的班级。
在整个巡讲教学过程中,我发挥了教师的主导作用,突出了学生的主体地位,引导学生主动探究、研究,获取解决问题的各种方法,为学生供给充足的时间、空间、材料,教学围绕学生的学习活动展开。抓住宝贵时机引导学生理解新方法,使新知识迎刃而解。两个班讲下来我最大的收获是教学中的应变本事提高了,不一样的学生给了我不一样的体会。当然也发现了自我的不足:还是不敢放手把主动权交给学生,即使放手了也牵着一点,这是在今后的的工作中应继续改善的地方;在提出一个问题后应给予学生必须的思考时间,不要过急。
在今后的教学中我会深深记住这次巡讲,继续改善自我的教学水平。
圆的面积教学反思免费篇十二
圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习资料的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
透过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,透过对圆有关知识学习,不仅仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。这节课中,我渗透了曲线图形与直线图形的关系,即化曲为直的思想。本节课,我认为我主要有以下几个亮点:
教学“圆的面积”计算公式推导时,故事激趣,渗透“转化”我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时光和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自我的推导想法,师生共同倾听并决定学生汇报圆的面积公式的推导过程,看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践潜力和创新意识。
在凸现圆的面积的好处以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一资料是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎样发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使明白,也能够让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。
根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是透过长方形推导的,三角形面积公式是透过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是透过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题能够转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我能够很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓
当学生透过第一个操作活动,得出圆的面积是半径平方的3倍多一些,与学生谈话:刚才透过数方格的方法我们研究出圆的面积是半径平方的3倍多一些,那么怎样才能精确的计算出圆的面积呢?让我们来做个实验。每个同学手中都有一个圆,此刻平均分成16份,自我拼拼看,能拼成什么图形?并想想它与圆有怎样的,样,透过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,贴合学生的认知水平。透过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c、2=πrh=r,平行四边形的面积=圆的面积,从而推导出s平=s圆=π×r×r=πr2。此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,那里课件没有一一演示,而是留给学生充分的空间,让学生自由创新这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流
中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索潜力、分析问题和解决同题的潜力得到了提高。