每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
21.1.1一元二次方程教学反思篇一
1、找出a,b,c的相应的数值;
2、验判别式是否大于或等于0;
3、当判别式的数值大于或等于0时,可以利用公式求根,若判别式的数值小于0,就判别此方程无实数解。
在讲解过程中,我要求学生先进行1、2步,然后再用公式求根。因为学生第一次接触求根公式,求根公式本身就很难,学生可以说非常陌生,如果不先进行1、2步,结果很容易出错。首先,对于一些粗心的同学来说,a,b,c的符号就容易出问题,也就是在找某个项的系数或常数项时总是丢掉前面的符号。其次,一无二次方程的求根公式形式复杂,直接代入数值后求根出错一定很多。但有少数心急的同学,他们总是嫌麻烦,省掉1、2步,直接用公式求根。
一是学生没体会这样做的好处,其实在做题过程中检验一下判别式非常必要,同时也简化了判别式的值,给下面的运算带来方便。这样做并不麻烦,而直接用公式求值也要进行这两步。
二是学生刚学习公式法,例题比较简单,对于简单的题,这样做还可以,但一旦养成习惯,遇到复杂的习题就不好办了。
三是部分学生老是想图省事,没学会走,就想跑,想一口吃个大胖子。
在今后的教学中,还要加强对新知识学习过程中格式和步骤的要求,并且对习惯不好的同学要进行耐心细致的讲解,让他们认识到这样做的弊端,掌握正确的学习方法,提高正确率。
21.1.1一元二次方程教学反思篇二
一元二次方程是九年级数学一个非常重要的内容,是首次出现的高于一次的方程。其解法的策略就是将其“降次”转化为一次方程。通过解比较简单的一元二次方程,引导学生认识直接开平方法解方程,再通过对比一边为完全平方形式的方程,使学生认识配方法的基本原理并掌握其具体方法,为后面的求根公式做准备。
1. 教学对象:本班学生58人,这个班的特点是两头力量少,中间力量多,基础知识薄弱。但学习气氛较浓,能调动学生学习数学的积极性和挑战性
2. 学生的认知分析:学生虽然具备初步的解题思路,但缺乏融会贯通和应用的能力。应适当地创设一些难易、新旧相结合的问题,加强学生对知识的应用。在学习过程中培养学生自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验。
1、知识与技能:学生会用直接开平方法解方程,x2=p,x2+2mx+m2=p(p≥0)建立一元二次方程模型解决简单的实际问题,循序渐进的让学生掌握直接开平方法的做法,通过对比学会配方法解数字系数的一元二次方程
2情感目标:渗透转化思想,掌握一些转化技能
重点:直接开平方法,简单的配方法
难点:配方,把一元二次方程转化为形如(x-a)2=b的过程
21.1.1一元二次方程教学反思篇三
《6.3二次函数与一元二次函数》的第一课时,主要是用方程的方法研究二次函数图像与x轴交点的个数及交点的求法问题。简而言之,就是借助数形结合的方法解决问题,这是本节课的难点。一方面学生要能够根据二次函数y=ax2+bx+c(a≠0)图像得到一元二次方程ax2+bx+c=0(a≠0)的根,即基本的读图能力;另一方面要能够根据一元二次方程ax2+bx+c=0(a≠0)来判断二次函数y=ax2+bx+c(a≠0)图像与x轴交点的个数,即会依据条件画图的能力。
这两方面对于函数知识的学习都尤其重要,所以我将此作为本节课的重要任务,渗透在探究二次函数与一元二次方程的关系的过程中,并通过训练使学生进一步理解数形结合的思想,掌握运用的方法。作为新授课,尤其要注重知识生成过程的设计。
数学课程标准指出:“学生的数学学习内容应当是现实的,有意义的,富有挑战性的,这些内容有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”对于教材的内容不能全盘复制,而应该以学生的现实生活为背景,已有的知识积累、学习经验和思维方式为基础,随着课堂活动的不断深入而逐步形成的。因此,本节课的教学中,我借助学生已有的判断一元二次方程ax2+bx+c=0根的情况(a≠0)和二次函数y=ax2+bx+c(a≠0)图象性质的知识基础,将图象与x轴交点的坐标,转化为已知函数值为零,求自变量的值的问题,即解一元二次方程。由“图”过渡到“数”,直观形象,学生易于理解。通过学生自己的思维方式进行自主探索、交流,去发现二次函数y=ax2+bx+c(a≠0)图像与x轴交点的个数和一元二次方程ax2+bx+c=0(a≠0)的根的情况的关系,能够实现课堂学习的自主化,调动学生深层思维的思考,让学生在“再创造”中学习新知,有利于知识的生成,提高课堂的教学效果,体现新课改中将学生作为课堂的主体、学习的主人的教育教学理念。知识生成过程中,教师做好课堂的引导者和组织者,适时、科学的进行启发、点拨。这就需要认真研读教材,设计合理有效的问题或是问题串,帮助学生“再创造”。
问题的设计要注意前后的呼应和连贯。比如本节课的知识生成是:直接借助根的判别式b2-4ac,来判断二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点的情况。这就需要在讲解图象与x轴交点的横坐标即是对应一元二次方程的根后,设计以下的问题有效过渡:(1)二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点有几种情况?(2)一元二次方程ax2+bx+c=0(a≠0)的根有几种情况,借助什么方法来判断呢?这就为后续的归纳做了有效的铺垫,使得新知的生成水到渠成。本节课,在引入问题的设计中做的不够充分,知识的生成没能有效呼应,没有达到预设的课堂效果。我要在以后的课堂教学中,加强对教材的研读,合理把握重难点,在情景引入和知识生成的问题设计上多下功夫,力争使自己的教育教学水平有新的突破。
看过九年级数学二次函数与一元二次方程教学反思的还看了:
1.九年级数学二次函数与一元二次方程同步练习题
2.九年级数学教学工作反思
3.九年级数学实际问题与二次函数同步练习题
4.一元二次方程初三数学单元试题附答案详解
21.1.1一元二次方程教学反思篇四
1、知识与能力:理解配方法,会利用配方法以一元二次式进行配方。通过对比、转化,总结得出配方法的一般过程,提高分析能力。通过对一元二次方程二次项系数是否为1的分类处理,锻炼学生的抽象概括能力。
2、过程与方法:会用配方法解简单的数学系数的一元二次方程。发现不同方程的转化方式,运用已有知识解决新问题。
3、情感态度价值观:通过配方法的探究活动,培养学生勇于探索的良好学习习惯。感觉数学的严谨性以及数学结论的确定性。
1、重点---会利用配方法熟练解一元二次方程。
2、难点---对于二次项系数不为1的一元二次方程通过系数化1进行适当变形后再利用配方法求解。
(一)活动1:提出问题
要使一块长方形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?设计意图:让学生在解决实际问题中学习一元二次方程的解法。
师生行为:教师引导学生回顾列方程解决实际问题的基本思路,学生讨论分析。
(二)活动2:温故知新
1.填上适当的数,使下列各式成立,并总结其中的规律。(1)x+ 6x+ =(x +3 ) (2) x+8x+ =(x+ )(3)x2-12x+ =(x- )2 (4) x2- 5x+ =(x- )2 (5)a2+2ab+ =(a+ )2 (6)a2-2ab+ =(a- )2 2.用直接开平方法解方程:x2+6x+9=2设计意图:第一题为口答题,复习完全平方公式,旨在引出配方法,培养学生探究的兴趣。
1
222
用心
爱心
专心(三)活动2:自主学习
自学课本p31---p32思考下列问题:
1.仔细观察教材问题2,所列出的方程x2+6x-16=0利用直接开平方法能解吗?2.怎样解方程x2+6x-16=0?看教材框图,能理解框图中的每一步吗?(同学之间可以交流、师生间也可交流。)
3.讨论:在框图中第二步为什么方程两边加9?加其它数行吗?4.什么叫配方法?配方法的目的是什么?5.配方的关键是什么?交流与点拨:
重点在第2个问题,可以互相交流框图中的每一步,实际上也是第3个问题的讨论,教师这时对框图中重点步骤作讲解,特别是两边加9是配方的关键,使之配成完全平方式。利用a2±2ab+b2=(a±b)2。
注意:9=(),而6是方程一次项系数。所以得出配方的关键是方程两边加上一次项系数一半的平方,从而配成完全平方式。
设计意图:学生通过自学经历思考、讨论、分析的过程,最终形成把一个一元二次方程配成完全平方式形式来解方程的思想
(四)活动4:例题学习
例(教材p33例1)解下列方程:(1)x-8x+1=0 (2)2x+1=-3x (3)3x2-6x+4=0教师要选择例题书写解题过程,通过例题的学习让学生仔细体会用配方法解方程的一般步骤。
交流与点拨:用配方法解一元二次方程的一般步骤:
(1)将方程化成一般形式并把二次项系数化成1;(方程两边都除以二次项系数)(2)移项,使方程左边只含有二次项和一次项,右边为常数项。(3)配方,方程两边都加上一次项系数一半的平方。(4)原方程变为( mx+n)2=p的形式。
(5)如果右边是非负数,就可用直接开平方法求取方程的解。设计意图:牢牢把握通过配方将原方程变为(mx+n)2=p的形式方法。
(五)课堂练习:
1.教材p34练习1(做在课本上,学生口答)2.教材p34练习2师生行为:对于第二题根据时间可以分两组完成,学生板演,教师点评。设计意图:通过练习加深学生用配方法解一元二次方程的方法。
1.理解配方法解方程的含义。
2.要熟练配方法的技巧,来解一元二次方程,
3.掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点。 4.配方法解一元二次方程的解题思想:“降次”由二次降为一次。
教材p42习题22.2第3题
---教后反思
通过本节课的学习,我发现:配方法不仅是解一元二次方程的方法之一,而且它还可作为其它许多数学问题的一种研究思想,其发挥的作用和意义十分重要。从学生的学习情况来看,效果普遍良好,且已基本掌握了这种数学方法,从本节课的具体教学过程来分析,我有以下几点体会和认识。
1:学生对这块知识的理解很好,学生自己总结了配方法的具体步骤,即:①化二次项系数为1;②移常数项到方程右边;③方程两边同时配上一次项系数一半的平方;④化方程左边为完全平方式;⑤(若方程右边为非负数)利用直接开平方法解得方程的根。理解起来也很容易,然后再加以练习巩固
2:教学方法上的几点体会:①需要创造性地使用教材,可以根据学生的实际情况对教材内容进行适当调整。②相信学生要为学生提供充分展示自己的机会本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,并且在此过程中教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学。 3:当然在这一块知识的教学过程中,学生也出现了个别错误,表现在:①二次项系数没有化为1就盲目配方;②不能给方程“两边”同时配方;③配方之后,右边是0,结果方程根书写成x=﹡的形式(应为x1=x2=﹡);④所给方程的未知字母有时不是x,而是y、z、a、m等,但个别粗心甚至细心的同学在结果写方程根时字母都变成了x。对于以上错误,我在最后的知识小结中,又重点强调了配方法的一般步骤,并说明其中关键的一步是第③步,必须依据等式的基本性质给方程两边同时加常数。
4、对于基础较差的少数学生我只要求认真理解并巩固“配方法”;对于基础较好的同学根据他们的课堂反应,我还在知识拓宽方面加以提示:因为完全平方式的值定是非负数,故若在说明某一多项式是否为非负数时,可采用配方法来证,这样对有些善于钻研思考的同学来说,在有关配方法的应用和探究方面,为之起到“抛砖引玉”的作用,也为后期部分知识的教学作了一定的铺垫。
5、在我本节课的教学当中,也有如下不妥之处:①对不同层次的学生要求程度不适当;②在提示和启发上有些过度;③为学生提供的思考问题时间较少,导致部分学生对本节知识“囫囵吞枣”,而最终“消化不良”,在以后的课堂教学中,我会力争克服以上不足。
21.1.1一元二次方程教学反思篇五
新课程要求培养学生应用数学的意识与能力,作为数学教师,我们要充分利用已有的生活经验,把所学的数学知识用到现实中去,体会数学在现实中应用价值。
这节课是“列一元二次方程解应用题(3),讲授在营销问题中以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题。这类注重联系实际考查学生数学应用能力的问题,体现时代性,体会数学在现实生活中的作用。
通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,具体我以为有以下几个特点:
一、课前准备的内容了解一元二次应用题的步骤,本节课的学习需准备的两个关系式。设计三个列代数式的题为学习例题时降低难度。
二、本节课例题,是营销问题中的一个典型例题,我在引导学生解决此题时,不仅关注结果更关注过程,让学生养成良好的解题习惯。
三、通过变式训练,让学生由浅入深,由易到难,也让学生解决问题的能力逐级上升。在讲完例题的基础上,将更多教学时间留给学生,这样学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流、相互学习,共同提高。
四、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。
五、课堂上多给学生展示的机会,比如我所设计练习题可用不同方法去求解,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励的教学手段,帮助学生形成积极主动求知态度,课堂收效大。
六、需改进的方面:
1、由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。例如练习题1有多种解法,课后一些学生与老师交流,但课上没有得到充分的展示。
2、在激励评价学生方面做胡还不够,例如学生在解决自主探究最后一个题目时,有同学利用第三种方法很巧妙,当时没有给予学生很好的激励及评价
3、下课后很多学生和老师沟通课上一生的错误问题,但他们上课并不敢提出,有点却场,所以平时要培养学生敢想敢说敢于发表
21.1.1一元二次方程教学反思篇六
新课程改革的核心目标是全面推进以培养创新精神和实践能力为重点的素质教育,培养21世纪所需的创新人才,这就要求在教学过程中既重视基础知识、基本技能的教育,又要重视创新精神和实践能力以及良好道德情操的培养。因此教学结构采用“以学生为主体—以教师为主导”的教学结构。通过对教学内容、学习活动等的设计,使学生在学习过程中既有很大的自主权,又能保证其学习不会发生质的偏离,能在适当的时候得到教师或伙伴的指导。学生处于这种开放式的学习环境是有程度限制的,这节课的教学过程中虽然在每一个小的学习环节都是采取的学生自主学习的方式。
但从整来教学的主导性太强,学习一直被老师牵着鼻子走。对一些思维速度的学习是可行的,而对于一些反应速度慢的学生来说跟着吃力,很快就失去学习的积极性。因此教师还要再放一把,给学生更广阔的思维空间。尤其是在环节的衔接过程,由学生思考下一步要做什么。学生是完全能够做到的,因为在复习时已把解决实际问题的一般过程复习了。
在教学过程中虽然以学生为主体,以自学为主。但是其积极主动性在某些同学来说还是不高的。对知识的获得的成就感也没有表现得那么明显。对于知识的广度和深度也没有举一反三的效果展示,更何况创新思维的培养。例如应在例题完成时,根据老师提出可以用设速度的方法为例,同学们还有什么方法?这样就起到了点睛的作用,为学生思维的开发提供了一个空间。只是重视了知识的巩固和运用,和解决问题的训练。虽说在总结时进行了思想教育,也没有见其明显的反馈。培养学生合作的小组学习不免有些形式化。因为在小组协作时都属于自我陈述,无合作解题的意向。
教师在教学过程中处于主导地位应关注学生分析,解决解决能力的培养;应关注学生交流协作表达能力的培养,应关注学生创新意识、能力的培养。从这些方面本节课教学过程中都表现的不足。还应提高在这方面的设计。还应提高驾驭课堂能力。
教学方法单一。几乎都是教师提问学生回答的形式。使整个课堂的也十分音调。学生的自主学习,探究学习,协作学习效果也不是很好。
教师的语言,在教学过程中教师的语言的地位是非常重要的,直接影响教学效果的成败。每一次出公开课都是一个锻炼学习的机会,从中能找到自己的一些缺点和不足。如在教学过程中由于语速过快而出现吐字不清的现象,口误出现频率也很高。语言表达能力还需要不断的锻炼。
培养学生的分析和解决问题能力,虽然不是一朝一夕的事情,但是必须重视每一次机会。特别提出的是王亮这名同学。这是一个比较特殊的学生,他的计算能力非常之强,速度非常之快,全班第一。记忆力也如此。而分析能力和解决问题能力就反过来了。举个例子,三角形的两个直角边是9厘米,三角形的面积是10平方厘米。如果设其中一个为x,那么另一个直角边可以表示为什么?这样的分析题都不能完成。他这种情况主要是没有掌握分析方法。因此每到一些简单的分析题时都要求他独立完成。在这节课上又出现了所问非所答的情况问“跳水运动员跳到最高点时的'速度是多少?”而他回答的却是平均速度。显然他平时不认真分析老师说的话或应用题的题意。只有从平时,从基础抓起。不放过一次机会。
还有一点值得提出的是教学过程中一定及时纠正学生的错误。在这堂中有多处学生的错误没有得到老师的纠正。如:在计算过程中,最大数加上最小数的和除以2或可以说(最大数+最小数)/2。学生没有加括号,也没有说“的和”都是错误的,要及时加以纠正。
基本完成了基本知识和基本技能的学习目标,也对学生进行了情感教育,但是创新思维的培养没有体现出来。从始至终,学生都是有理有据的回答老师的提问。在总结分析时,教师只提到了有多种做法,学生可能是一头雾水。很可惜的失去了一次对学生创新思维培养的机会。
教学的主动权牢牢的抓在教师的手里。更要重视教学环节的灵活性。这样才有可能抓住学生的思维的火花,深入探究。推动学生思考的深度和广度,培养学生的创新能力。
教学中一定从学生的实际出发,学生特征涉及到智力因素和非智力因素。根据不同的情况在一节课学完之后,每一个同学都有其不同的收获。这一点做得很不好,很明显只有三个学生能积极的主动学习,不断解答老师的提问,而另三个同学虽然有特殊原因,但在教学过程中
21.1.1一元二次方程教学反思篇七
利用求根公式解一元二次方程的一般步骤:
1、找出a,b,c的相应的数值
2、验判别式是否大于等于0
3、当判别式的数值符合条件,可以利用公式求根、
学生第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多、
1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号
2、求根公式本身就很难,形式复杂,代入数值后出错很多、
其实在做题过程中检验一下判别式这一步单独提出来做并不麻烦,直接用公式求值也要进行,提前做这一步在到求根公式时可以把数值直接代入、在今后的教学中注意详略得当,不该省的地方一定不能省,力求达到更好的教学效果、
通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,激发了学生思维的火花,具体有以下几个特点:
本节课第一个例题,我在引导解决此题之后,总结了利用求根公式解一元二次方程的一般步骤,不仅关注结果更关注过程,让学生养成良好的解题习惯。
例2、3是例1的变式与提高,通过变式训练,让学生由浅入深,由易到难,也让学生解决问题的能力提高,这是这节课中的一大亮点,在讲完例题的基础上,将更多的时间留给学生,这样学生感觉到成功的机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流,相互学习,共同提高。
课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。总之通过各种激励的教学手段,帮助学生形成积极的学习态度,课堂收效大。
需要改进的方面,由于怕完不成任务,教师讲的还是多了些,以后应最大限度的发挥学生的主体作用。
21.1.1一元二次方程教学反思篇八
在《实际问题与一元二次方程》这一单元教学中,师生共同存在一个困惑,这困惑源于九年级数学《教师教学用书》102页测试题第13题:百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元。为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。经市场调查发现:如果每件童装降价1元,那么平均每天就多售出2件。要想平均每天销售这种童装盈利1200元,那么童装应降价多少元?
解:设平均每件童装应降价x元,由题意得:
(40—x)(20+2x)=1200
解之得 x1=10 , x2=20
x1=10 ,x2=20均达到了扩大销售量,增加盈利,减少库存的目的,所以都满足题意。
答:要想平均每天销售这种童装盈利1200元,那么每件童装应降价10元或20元。
对于我的解题思路,善于动脑筋的学生提出不同的质疑:(1)降价20元,薄利多销,更能减少库存,应选最优的方案。所以只选取x=20。(2)降价10元,每天销售40件,同样能盈利1200元。库存部 分还可继续盈利,这样在减少库存的基础上能进一步增加盈利,所以只取x=10。学生的不同见解,说明学生善于动脑思考,我及时给予了鼓励;要敢于向教材挑战、敢于向老师质疑。而对于这道题最合理的解法,我们师生共同关注、共同探讨。
课后,我与同行交流、查阅资料,并利用星期天到新华书店、新奇书店、教育书店翻阅教辅资料。经过一星期的查阅搜集,我筛选了一组类型题,课前印发给同学们,在课堂上进行专题学习,师生带着困惑共同去探究。
1、进一步培养学生运用一元二次方程分析和解决实际问题的能力,再次学习数学建模思想。 2、将同类题对比探究,培养学生分析、鉴别的能力。
培养运用一元二次方程分析和解决实际问题的能力,学习数学建模思想。
将类同题对比探究,培养学生分析、鉴别的能力。
第1题选自九年级数学《教师教学用书》102页测试题第13题(见上)。
第2题:选自九年级数学《学苑新报》第4期第15题。某市场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元, 为了扩大销售,增加利润,尽量减少库存,市场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?
第3题:选自九年级数学《新课标点拨》270页第27题。某商场销售一批儿童玩具,若每天卖20件每件可盈利40元 ,为了扩大销售,尽快减少存库,商场决定采取适当的降价措施,调查发现,若每件玩具每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,那么每件玩具应降价多少元?
第4题:选自阶段性教学质量评估检测第4页第七题。西瓜经营户以2元/千克的价格出售。每天可售出200千克,为了促销,该经营户决定降价出售,经调查发现,这种小型西瓜降价0.1元/千克,每天可多售出40千克,另外,每天的房租和固定成本共24元,该经营户要想每天盈利240元,应将小型西瓜每千克售价降低多少元? 课堂上学生积极参与探究、分析对比得出:第(1)、(4)两题的两个答案都满足题意。第(2)、(3)两题为尽快减少库存,只选取降价多的那个答案(这与资料中的答案相吻合)。学生进一步总结、归纳得出:若题中强调尽量减少库存或尽快减少库存,应只选取降价多的那个答案。若题中没有特殊要求,那么两个答案都满足题意。
21.1.1一元二次方程教学反思篇九
利用求根公式解一元二次方程的一般步骤:
1、找出a,b,c的相应的数值
2、验判别式是否大于等于0
3、当判别式的数值符合条件,可以利用公式求根。
在讲解过程中,我让学生直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多:
1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号
2、求根公式本身就很难,形式复杂,代入数值后出错很多、其实在做题过程中检验一下判别式着一步单独挑出来做并不麻烦,直接用公式求值也要进行,提前做着一步在到求根公式时可以把数值直接代入。在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果。