当前位置:网站首页 >> 作文 >> 最新初三上数学教学计划表 初三年级数学教学计划(模板6篇)

最新初三上数学教学计划表 初三年级数学教学计划(模板6篇)

格式:DOC 上传日期:2023-04-07 11:48:03
最新初三上数学教学计划表 初三年级数学教学计划(模板6篇)
时间:2023-04-07 11:48:03     小编:zdfb

光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。计划书写有哪些要求呢?我们怎样才能写好一篇计划呢?以下是小编为大家收集的计划范文,仅供参考,大家一起来看看吧。

初三上数学教学计划表 初三年级数学教学计划篇一

本学期教学内容是华师大版九年级上教材,内容与现实生活联系非常密切,知识的综合性也较强,教材为学生动手操作,归纳猜想提供了可能。观察、思考、实验、想一想、试一试、做一做等,给学生留有思考的空间,让学生能更好地自主学习。因此对每一章的教学都要体现师生交往、互动、共同发展的过程。要求老师成为学生数学学习的组织者和引导者,从学生的生活经验和已有的知识背景出发,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本数学知识、技能、思想、方法,提高解决问题的能力。开学第一周我对学生的观察和了解中发现少部分学生基础还可以,而大部分学生基础和能力比较差,甚至加减乘除运算都不过关,更不用提解决实际问题了。所以一定要想方设法,鼓励他们增强信心,改变现状。在扎实基础上提高他们解题的基本技能和技巧。

本学期的教学目标是九年级(上)的五章内容,力求学生掌握基础的同时提高他们的动手操的能力,概括的能力,类比猜想的能力和自主学习的能力。在初中的数学教学实践中,常常发现相当一部分学生一开始不适应中学教师的教法,出现消化不良的症状,究其原因,就学生方面主要有三点:

一是学习态度不够端正;

二是智能上存在差异;

三是学习方法不科学。

我以为施教之功,贵在引导,重在转化,妙在开窍。因此为防止过早出现两极分化,我准备具体从以下几方面入手:

学生由小学进入中学,心理上发生了较大的变化,开始要求“独立自主”,但学生环境的更换并不等于他们已经具备了中学生的诸多能力。因此对学习道路上的困难估计不足。鉴于这些心理特征,教师必须十分重视激发学生的求知欲,有目的地时时地向学生介绍数学在日常生活中的应用,还要想办法让学生亲身体验生活离开数学知识将无法进行。从而激发他们学习数学知识的直接兴趣,数学第一章内容的正确把握能较好地做到这些。同时在言行上,教师要切忌伤害学生的自尊心。

(1)在教师这方面,首先做到要通读教材,驾奴教材,认真备课,认真备学生,认真备教法,对所讲知识的每一环节的过渡都要精心设计。给学生出示的问题也要有层次,有梯度,哪些是独立完成的,哪些是小组合作完成的,知识的达标程度教师更要掌握。同时作业也要分层次进行,使优生吃饱,差生吃好。

(2)重视学生能力的培养

九年级的数学是培养学生运算能力,发展思维能力和综合运用知识解决实际问题的能力,从而培养学生的创新意识。根据当前素质教育和新课改的的精神,在教学中我着重对学生进行上述几方面能力的培养。充分发挥学生的主体作用,尽可能地把学生的潜能全部挖掘出来。

进入中学,有些学生纵然很努力,成绩依旧上不去,这说明中学阶段学习方法问题已成为突出问题,这就要求学生必须掌握知识的内存规律,不仅要知其然,还要知其所以然,以逐步提高分析、判断、综合、归纳的解题能力,我要求学生养成先复习,后做作业的好习惯。课后注意及时复习巩固以及经常复习巩固,能使学过的知识达到永久记忆,遗忘缓慢。

课堂教学与数学改革是相铺相成的,做好教学研究能更好地为课堂教学服务。本学期将积极参加学校和备课组的各项教研活动,撰写“教学随笔”和“教学反思”。本人决定在第十一周开一堂公开课,与学校同组的老师共同探讨教学。

继续教育是提高教师基本技能的重要途径。本学期我积极参与校内外组织的各项继续教育,努力提升教育教学水平。

1、通过网络继续教育培训,学习新教育理念,不断完善教育教学方式。

2、阅读有关新课程的书籍,做好读书笔记;总之,本学期的教学工作任务还有很多,需要在今后的实际工作中进一步补充和完善。

初三上数学教学计划表 初三年级数学教学计划篇二

新学期,根据九年级合班的实际,首先是先摸清底子,稳住学生,然后根据学生学情分布情况,重新划分学习小组,对新来的学生,做好各方面的工作,使他们迅速适应新环境,然后,尽快帮他们找到新的学习榜样和新学伴,帮他们树立竞争意识和发展意识以及创新意识,鼓励大家在新学期,获得更大的进步,取得更大的发展。

本学期所教九年级数学包括第二十一章《二次根式》,第二十二章《一元二次方程》,第二十三章《旋转》,第二十四章《圆》。第二十五章《概率初步》。代数三章,几何两章。而且本学期要授完下册第二十七章内容。

(1)根据学情,调整好教学进度,优化学习方法,激活知识积累。

(2)形成知识网络,解决实际问题。

(3)强化规范训练,提高应考能力。

(4)关注学生特长需求,做好学生心理疏导。

具体的说,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

掌握二次根式的概念、性质及计算;会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。

培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。

进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。

周次时间教学内容备注

第一周9月1日—9月6日第二十一章二次根式21.1

第二周9月7日—9月13日21.221.3

第三周9月14日—9月20日21.3数学活动小结

第四周9月21日—9月27日第二十二章一元一次方程22.122.2

第五周9月28日—10月4日22.210月1日—7日放假

第六周10月5日—10月11日22.3

第七周10月12日—10月18日第二十三章旋转23.123.2

第八周10月19日—10月25日23.3课题学习数学活动小结

第九周10月26日—11月1日第二十四章圆24.124.226日重阳节

第十周11月2日—11月8日24.324.4数学活动小结

第十一周11月9日—11月15日期中质量检测

第十一周11月16日—11月22日试卷讲评

第十二周11月23日—11月29日第二十五章概率初步25.1

第十三周11月30日—12月6日25.2

第十七周12月28日—1月3日26.31月1日—3日放假

第十八周1月4日—1月10日第二十七章相似27.127.2

第十九周1月11日—17日27.227.3

第二十周1月18日—1月24日期末复习

第二十一周1月25日—1月31日期末质量检测

初三上数学教学计划表 初三年级数学教学计划篇三

学生的知识技能基础:学生在初二上学期已经学习过开平方,知道一个正数有两个平方根,会利用开方求一个正数的两个平方根,并且也学习了完全平方公式。在本章前面几节课中,又学习了一元二次方程的概念,并经历了用估算法求一元二次方程的根的过程,初步理解了一元二次方程解的意义;

学生活动经验基础:在相关知识的学习过程中,学生已经经历了用计算器估算一元二次方程解的过程,解决了一些简单的现实问题,感受到解一元二次方程的必要性和作用,基于学生的学习心理规律,在学习了估算法求解一元二次方程的基础上,学生自然会产生用简单方法求其解的欲望;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

教科书基于学生用估算的方法求解一元二次方程的基础之上,提出了本课的具体学习任务:用配方法解二次项系数为1且一次项系数为偶数的一元二次方程。但这仅仅是这堂课具体的教学目标,或者说是一个近期目标。而数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课《配方法》内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是:

1、会用开方法解形如(x?m)2?n(n?0)的方程,理解配方法,会用配方法解二次项系数为1,一次项系数为偶数的一元二次方程;

2、经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效模型,增强学生的数学应用意识和能力;

3、体会转化的数学思想方法;

4、能根据具体问题中的实际意义检验结果的合理性。

本节课设计了五个教学环节:第一环节:复习回顾;第二环节:情境引入;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。

活动内容:1、如果一个数的平方等于4,则这个数是 ,若一个数的平方等于7,则这个数是 。一个正数有几个平方根,它们具有怎样的关系?

2、用字母表示完全平方公式。

3、用估算法求方程x2?4x?2?0的解?你喜欢这种方法吗?为什么?你能设法求出其精确解吗?

活动目的:以问题串的形式引导学生逐步深入地思考,通过前两个问题,引导学生复习开平方和完全平方公式,通过后一个问题的回答让学生进一步体会用估计法解一元二次方程较麻烦,激发学生的求知欲,为学生后面配方法的学习作好铺垫。

实际效果:第1和第2问选两三个学生口答,由于问题较简单,学生很快回答出来。第3问由学生独立练习,通过练习,学生既复习了估算法,同时又进一步体会到了估算法较麻烦,达到了激发学生探索新解法的目的。

活动内容:(1)工人师傅想在一块足够大的长方形铁皮上裁出一个面积为100cm2正方形,请你帮他想一想,这个正方形的边长应为 ;若它的面积为75cm2,则其边长应为 。(选1个同学口答)

(2)如果一个正方形的边长增加3cm后,它的面积变为64cm2,则原来的正方形的边长为 。若变化后的面积为48cm2呢?(小组合作交流)

(3)你会解下列一元二次方程吗?(独立练习)

x2?5; (x?2)2?5; x2?12x?36?0。

(4)上节课,我们研究梯子底端滑动的距离x(m)满足方程x2?12x?15?0,你能仿照上面几个方程的解题过程,求出x的精确解吗?你认为用这种方法解这个方程的困难在哪里?(合作交流)

活动目的:利用实际问题,让学生初步体会开方法在解一元二次方程中的应用,为后面学习配方法作好铺垫;培养学生善于观察分析、乐于探索研究的学习品质及与他人合作交流的意识。

实际效果:在复习了开方的基础上,学生很快口答出了第1问,为解决第二问做好了准备。第2问让学生合作解决,学生在交流如何求原来正方形的边长时,产生了不同的方法,有的学生直接开方先求出了新正方形的边,再减增加的边长,求出原来的正方形的边长;有的同学用了方程,设原正方形的边长为xcm,根据题意列出了一元二次方程(x?3)2?64;(x?3)2?48然后两边开方,根据实际情况求出了原来正方形的边长,这样,再一次经历了用一元二次方程解决实际问题的过程,并初步了解了开方法在一元二次方程中的简单应用。在第2问的基础上,学生很快解决了第3问。但学生在解决第4问时遇到了困难,他们发现等号的左端不是完全平方式,不能直接化成(x?m)2?n (n?0)的形式,因此大部分同学认为这个方程不能用开方法解,那么如何解决这样的方程问题呢?这就是我们本节课要来研究的问题(自然引出课题),为后面探索配方法埋好了伏笔。

活动内容1:做一做:(填空配成完全平方式,体会如何配方)

填上适当的数,使下列等式成立。(选4个学生口答)

x2?12x?_____?(x?6)2 x2?6x?____?(x?3)2

x2?8x?____?(x?___)2 x2?4x?____?(x?___)2

问题:上面等式的左边常数项和一次项系数有什么关系?对于形如x2?ax的式子如何配成完全平方式?(小组合作交流)

活动目的:配方法的关键是正确配方,而要正确配方就必须熟悉完全平方式的特征,在此通过几个填空题,使学生能够用语言叙述并充分理解左边填的是“一次项系数一半的平方”,右边填的是“一次项系数的一半”,进一步复习巩固完全平方式中常数项与一次项系数的关系,为后面学习掌握配方法解一元二次方程做好充分的准备。

实际效果:由于在复习回顾时已经复习过完全平方式,所以大部分学生很快解决四个小填空题。通过小组的合作交流,学生发现要把形如x2?ax的式子a如何配成完全平方式,只要加上一次项系数一半的平方即加上()2即可。而2

且讲解中小组之间互相补充、互相竞争,气氛热烈,使如何配成完全平方式的方法更加透彻。事实上,通过对配方的感知的过程,学生都能用自己的语言归纳总结出配成完全平方式的方法,这就为下一环节“用配方法解一元二次方程”打好基础。由此也反映出学生善于观察分析的良好品质,而这种品质是在学生自觉行为中得到培养的,体现了学生良好的情感、态度、价值观。 活动内容2:解决例题

(1)解方程:x2+8x-9=0.(师生共同解决)

解:可以把常数项移到方程的右边,得

x2+8x=9

两边都加上(一次项系数8的一半的平方),得

x2+8x+42=9+42.

(x+4)2=25

开平方,得 x+4=±5,

即 x+4=5,或x+4=-5.

所以 x1=1, x2=-9.

(2)解决梯子底部滑动问题:x2?12x?15?0(仿照例1,学生独立解决) 解:移项得 x2+12x=15,

两边同时加上62得,x2+12x+62=15+36,即(x+6)2=51

两边开平方,得x+6=±51 所以:x1??6,x2??51?6,但因为x表示梯子底部滑动的距离所以x2??51?6 不合题意舍去。 答:梯子底部滑动了(51?6)米。

活动内容3:及时小结、整理思路

用这种方法解一元二次方程的思路是什么?其关键又是什么?(小组合作交流)

活动目的:通过对例1和例2的讲解,规范配方法解一元二次方程的.过程,让学生充分理解掌握用配方法解一元二次方程的基本思路及关键是将方程转化成(x?m)2?n(n?0)形式,同时通过例2提醒学生注意:有的方程虽然有两个不同的解,但在处理实际问题时要根据实际意义检验结果的合理性,对结果进行取舍。由于此问题在情境引入时出现过,因此也达到前后呼应的目的。最后由问题“用这种方法解一元二次方程的思路是什么?”引出配方法的定义。

实际效果:学生经过前一环节对配方法的特点有了初步的认识,通过两个例题的处理,进一步完善对配方法基本思路的把握,是对配方法的学习由探求迈向实际应用的第一步。最后利用两个问题,通过小组的合作交流得出配方法的基本思路和解决问题的关键,结论的得出来源于学生在实例分析中的亲身感受,体现学生学习的主动性。

活动内容4、应用提高

例3:如图,在一块长和宽分别是16米和12米的长方形耕地上挖两条宽度相等的水渠,使剩余的耕地面积等于原来长方形面积的一半,试求水渠的宽度。(先独立思考,再小组合作交流)

活动目的:在前两个例题的基础上,通过例3进一步提高学生分析问题解决问题的能力,帮助学生熟练掌握配方法在实际问题中的应用,也为后续学习做好铺垫。实际效果:大部分学生通过独立思考,结合图形很快列出了方程,在交流过程中小组成员之间产生了分歧,有的同学认为,如果设水渠的宽为x米,则1?12?16;有的同学认为如果设水渠的宽为x21米,则方程应该是16?12?12x?16x?x2??12?16,并且给出了合理的解2方程应该是(16?x)(12?x)?

释;有的同学则认为,如果剩余的耕地面积等于原来的一半则意味着水渠的面积也等于原来长方形面积的一半,所以方程可以列为:12x?16x?x2?1?12?16。面对这些问题,组织学生解他们2所列出的几个方程,然后再让小组成员合作交流讨论,通过讨论,学生发现这三种方法都正确,并且指出第一种方法可以利用平移水渠,把分割成的四部分拼在一起,构成了一个较大的矩形(如下图),然后再利用矩形的面积公式列出方程,此种方法在解决此类问题时最简单。这样通过学生之间的争论、辩论提高了课堂效率,激发了学生学习数学的热情,达到了资源共享。

活动内容:解下列方程

(1)x2?10x?25?7;(2)x2?6x?1;(3)x(x?14)?0(4)x2?8x?9

活动目的:对本节知识进行巩固练习。

实际效果:此处留给学生充分的时间与空间进行独立练习,通过练习,学生基本都能用配方法解解二次项系数为1、一次项系数为偶数的一元二次方程,取得了较好的教学效果,加深了学生对“用配方法解简单一元二次方程”的理解。

第五环节:课堂小结

活动内容:师生互相交流、总结配方法解一元二次方程的基本思路和关键,以及在应用配方法时应注意的问题。

活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想(学生畅所欲言,教师给予鼓励)。

实际效果:学生畅所欲言谈自己的切身感受与实际收获,掌握了配方法的基本思路和过程。

第六环节:布置作业

课本50页习题2.3 1题、2题

1、 创造性地使用教材

教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。学生在初一、初二已经学过完全平方公式和如何对一个正数进行开方运算,而且普遍掌握较好,所以本节课从这两个方面入手,利用几个简单的实际问题逐步引入配方法。教学中将难点放在探索如何配方上,重点放在配方法的应用上。本节课老师安排了三个例题,通过前两个例题规范用配方法解一元二次方程的过程,帮助学生充分掌握用配方法解一元二次方程的技巧,同时本节课创造性地使用教材,把配方法(3)中的一个是设计方案问题改编成一个实际应用问题,让学生体会到了方程在实际问题中的应用,感受到了数学的实际价值。培养了学生分析问题,解决问题的能力。

2、 相信学生并为学生提供充分展示自己的机会

课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,并且在此过程中教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学。

3、注意改进的方面

在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。

初三上数学教学计划表 初三年级数学教学计划篇四

(1)会用公式法解一元二次方程;

(2)经历求根公式的发现和探究过程,提高学生观察能力、分析能力以及逻辑思维能力;

(3)渗透化归思想,领悟配方法,感受数学的内在美.

知识层面:公式的推导和用公式法解一元二次方程;

能力层面:以求根公式的发现和探究为载体,渗透化归的数学思想方法.

教学难点:求根公式的推导.

总体设计思路:

以旧知识为起点,问题为主线,以教师指导下学生自主探究为基本方式,突出数学知识的内在联系与探究知识的方法,发展学生的理性思维.

解下列一元二次方程:(学生选两题做)

(1)x2+4x+2=0 ; (2)3x2-6x+1=0;

(3)4x2-16x+17=0 ; (4)3x2+4x+7=0.

然后让学生仔细观察四题的解答过程,由此发现有什么相同之处,有什么不同之处?

接着再改变上面每题的其中的一个系数,得到新的四个方程:(学生不做,思考其解题过程)

(1)3x2+4x+2=0; (2)3x2-2x+1=0;

(3)4x2-16x-3=0 ; (4)3x2+x+7=0.

思考:新的四题与原题的解题过程会发生什么变化?

设计意图: 1.复习巩固旧知识,为本节课的学习扫除障碍;

2.让学生充分感受到用配方法解题既存在着共性,也存在着不同的现象,由此激发学生的求知欲望.

3、学生根据自己的情况选两题,这样做能保证运算的正确和继续学习数学的信心。

由学生的观察讨论得到:用配方法解不同一元二次方程的过程中,相同之处是配方的过程----程序化的操作,不同之处是方程的根的情况及其方程的根.

进而提出下面的问题:

既然过程是相同的,为什么会出现根的不同?方程的根与什么有关?有怎样的关系?如何进一步探究?

让学生讨论得出:从一元二次方程的一般形式去探究根与系数的关系.

ax2+bx+c=0(a≠0) 注:根据学生学习程度的不同,可

ax2+bx=-c 以采用学生独立尝试配方, 合

x2+ x=- 作尝试配方或教师引导下进行

x2+ x+ =- + 配方等各种教学形式.

(x+ )2=

然后再议开方过程(让学生结合前面四题方程来加以讨论),使学生充分认识到“b2 -4ac”的重要性.

当b2-4ac≥0时,

(x+ )2= 注:这样变形可以避免对a正、负的讨论,

x+ = 便于学生的理解.

x=- 即x=

x1= , x2=

当b2-4ac<0时,

方程无实数根.

设计意图:让学生通过经历知识形成的全过程,从而提高自身的观察能力、分析问题和解决问题的能力,发展了理性思维.

由上面的探究过程可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c确定. 当b2-4ac≥0时,

x=;

当b2-4ac<0时,方程无实数根.

这个式子对解题有什么帮助?通过讨论加深对式子的理解,同时让学生进一步感受到数学的简洁美、和谐美.

进而阐述这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.

设计意图: 理解是记忆的基础。只有理解了公式才能烂熟于心,才能在题目中熟练应用,不会因记不清公式造成运算的错误。

运用公式法解一元二次方程.(前两道教师示范,后两道学生练习)

(1)2x2-x-1=0; (2)4x2-3x+2=0 ;

(3)x2+15x=-3x; (4)x2- x+ =0.

注:( 教师在示范时多强调注意点、易错点,会减少学生做题的错误,让学生在做题中获得成功感。)

设计意图:进一步阐述求根公式,归纳总结用公式法解一元二次方程的一般步骤,及时总结简化运算,节约时间又提高做题的准确性。

用公式法解一元二次方程:(比一比,看谁做得又快又对)

(1)x2+x-6=0; (2)x2- x- =0;

(3)3x2-6x-2=0;(4)4x2-6x=0;

设计意图:能够熟练运用公式法解一元二次方程,让每位学生都有所收获,通过大量练习,熟悉公式法的步骤,训练快速准确的计算能力。

[想一想]

清清和楚楚刚学了用公式法解一元二次方程,看到一个关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 清清说:“此方程有两个不相等的实数根”,

而楚楚反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由.

设计意图:基于学生基础较好,因此对求根公式作进一步深化,并综合运用了配方法,使不同层次的学生都有不同提高.比较配方法在不同题型中的用法,

避免以后出现运算错误。

归纳小结, 结合上面想一想,让学生尝试对本节课的知识进行梳理,对方法进行提炼,从而使学生的知识和方法更具系统化和网络化,同时也是情感的升华过程.

㈠必做题

㈡选做题:p46第12题。

设计意图:结合学生的实际情况,可以分层布置。 适合的练习既巩固了所学提高了计算的速度又保养了学生学习数学的兴趣和信心。

初三上数学教学计划表 初三年级数学教学计划篇五

本学期是初中学习的关键时期本学期我担任初三年级三(5、6)两个班的数学教学工作,是新课程标准实验教材,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中的创新意识、引导学生进行思考问题方式都必须不同与以往的教学。因此,在完成教学任务的同时,必须尽可能性的创设情景,让学生经历探索、猜想、发现的过程。并结合教学内容和学生实际,把握好重点、难点。树立素质教育观念,以培养全面发展的高素质人才为目标,面向全体学生,使学生在德、智、体、美、劳等诸方面都得到发展。为做好本学期的教育教学工作,特制定本计划。

初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。

本学期所教初三数学包括第一章 证明(二),第二章 一元二次方程,第三章 证明(三),第四章 视图与投影,第五章 反比例函数,第六章 频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数 这两章是与数及数的运用有关的。频率与概率 则是与统计有关。

在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。

在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。

本册教材包括几几何何部分《证明(二)》,《证明(三)》,《视图与投影》。代娄部分《一元二次方程》, 《反比例函数》。以及与统计有关的《频率与概率》。《证明(二)》,《证明(三)》的重点是1、要求学生掌握证明的基本要求和方法,学会推理论证;2、探索证明的思路和方法,提倡证明的多样性。难点是1、引导学生探索、猜测、证明,体会证明的必要性;2、在教学中渗透如归纳、类比、转化等数学思想。《视图与投影》和重点是通过学习和实践活动判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。难点是理解平行投影与中心投影,明确视点、视线和盲区的内容。《一元二次方程》, 《反比例函数》的重点是1、掌握一元二次方程的多种解法;2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。难占是1、会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。《频率与概率》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。

针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:

1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。

2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。

3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。

4、新课教学中涉及到旧知识时,对其作相应的复习回顾。

5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

除了以上计划外,我还将预计开展转化个别后进生工作,教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力,重视实习作业。

初三上数学教学计划表 初三年级数学教学计划篇六

1、进一步认识建立方程模型的作用,提高数学的应用意识

2、在用方程解决实际问题的过程中,提高抽象、概括、分析问题的能力

重点:用一元二次方程解决实际问题

难点:正确寻找等量关系

一根长22cm的铁丝。

(1)能否围成面积是30cm2的矩形?

(2)能否围成面积是32 cm2的矩形?并说明理由。

分析情境问题可知:如果设这根铁丝围成的矩形的长是xcm,那么矩形的宽是

____________。根据相等关系:矩形的长×矩形的宽=矩形的面积,可以列出方程求解。

思考:这根铁丝围成的矩形中,面积最大是多少?

例 1 如图,在矩形abcd中,ab=6,bc=12,点p从

点a沿ab向点b 以1/s的速度移动;同时,点q从点b沿边bc

向点c以2/s的速度移动,问几秒后△pbq的面积等于82?

分析:题中含有等量关系:s△pbq =82,只要用点p运动的时间

来表示三角形各边的长并代入等量关系式即可得到相应的方程。

例 2 如图,在矩形abcd中,ab=6cm,

bc=3cm。点p沿边ab从点a开始向点b以2cm/s

的速度移动,点q沿边da从点d开始向点a以1cm/s

的速度移动。如果p、q同时出发,用t(s)表示移动的时间(0≤t≤3)那么,当t为何值时,△qap的面积等于2cm2?

1、p98 练习

2、思维拓展:

如图,有100m长的篱笆材料,要围成一矩形仓库,

要求面积不小于600m2,在场地的北面有一堵50m的旧墙,

有人用这个篱笆围成一个长40m,宽10m的仓库,但面积

只有40×10m2,不合要求,问应如何设计矩形的长与宽才能符合要求呢?

如何正确寻找实际问题中的等量关系?

后进生:p98 练习 p99 习题4.3 6 优生:p99 习题4.3 6、7、8

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服