人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
比的基本性质说课稿评价篇一
下面我将从:教材分析、教学目标、教法分析、教学过程分析、教学设计说明等几个方面对我的教学设计进行说明。
1、教材的地位及作用
“分式的基本性质(第1课时)”是人教版八年级数学下册第十六章第一节“分式”的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。
2、学生情况分析
学习的过程是自我生成的过程,其基础是学生原有的知识。在学习本节课之前,学生原有的知识市分数的基本性质的运用。八年级学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定的归纳总结能力,那么如何让学生灵活运用分式的基本性质进行化简就是本节内容要突破的难点。
3、教学重难点分析
根据以上学习任务和学情分析,确定本节课的教学重难点如下:
教学重点:理解并掌握分式的基本性质,对分式基本性质的理解及其初步运用。
教学难点:灵活运用分式的基本性质,进行分式化简、变形。
教学目标应该从知识与技能、过程与方法、情感态度与价值观三个方面体现,而在教学过程中,这三个方面应该是相互融合的,相互补充的,因此我确定本课教学目标是:
1、了解分式的基本性质。灵活运用“性质”进行分式的变形。
2、通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法,积累数学活动经验。
3、通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。
1、教学方法
基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。
2、学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究-主动总结-主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。
因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
多媒体课件,小黑板
活动1:复习分数的基本性质
在教学过程中,为了达到激活学生原有的知识,,同时通过对已有知识的回顾引入新课,我设计了以下的情景导入:
1、下列分数是否相等?可以进行变形的依据是什么?
2、分数的基本性质是什么?怎样用式子表示?
老师演示课件,学生独立思考并举手发言,最后老师总结,演示分数的基本性质。
设计意图:通过复习分数的通分、约分总结出分数的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。
这里我通过问题情境的创设,引发学生的兴趣,由复习分数的基本性质自然过度到新知识的引入,为后面的学习埋下伏笔,为同学自主学习提供了知识基础。
活动2:类比得出分式的基本性质
因为有了导入问题引发的思考,我借着学生们刚进入良好的学习、思考状态,马上提出问题:
1、类比分数的基本性质,你能猜想出分式有什么性质吗?
2、你能用语言来描述分式的基本性质吗?
3、类比分数的基本性质,在理解分式基本性质时应注意那几方面?
老师逐一演示问题,学生分组讨论并派代表发言,老师从中加以引导,再由师生共同总结出分式的基本性质。
设计意图:让学生自己运用类比的方法发现分式的基本性质,并通过合作交流,更好地总结出分式的基本性质,从而实现了学生主动参与、探究新知识的目的。
同时,我组织学生进行全班讨论、交流,通过互相补充以及教师适时的引导,学生们总结出:
1、分式与分数有相同的形式,只是分式的分子和分母都是整式;
2、分式其实就是用字母代替数得到的,即分式中的字母本身就代表某个数,因此分数的基本性质也应该适用于分式。
在此基础上,我们进一步总结得到:
1、分式的基本性质:
分式的分子与分母同乘以(或除以)不为零的整式,分式的值不变。
2、分式的基本性质中应该注意:
(1)充分理解“同时”这个词的含义,它包含两层意义:分子、分母同时乘以或除以,同一个整式;
(2)注意括号内的限制条件:m、n是不为零的整式,若m、n=0,则分式就没有意义了;
(3)此性质的隐含条件是:分式中,b≠0。
设计意图:一方面检查学生对“性质”的认识程度,另一方面通过学生的思考与归纳,进一步加深对“性质”理解。
我在这里的设计,主要原因是:
1、运用类比思想让学生通过知识迁移学习新知,比教师讲授更能加深学生的理解。
2、体验“类比”思想和方法,有利于学生学习能力的提高;
3、学生的理解层次尚浅,需要教师适时的点拨与归纳,因此,提出问题时应引起学生的关注,强化对性质的理解。
活动3:初步应用分式的基本性质
课件展示例题,学生独立思考问题,然后小组讨论,老师巡堂给予指导,最后由学生总结出解题经验。
1)课本第10页例2填空:
2)设计意图:例2是分式基本性质的运用,让学生研究每一题的特点,紧扣“性质”进行分析,以期达到理解并掌握性质的目的。
活动4:练习巩固拓展知识
课堂练习:
(1)课本第11页4.下列各组中的两个分式是否相等?为什么?
(2)不改变分式的值,使分子、分母里的系数变为整数:
教师展示练习学生独立思考,老师巡堂并进行个别辅导,然后,对于第1题,进行个别提问;第2题,叫两名学生到黑板演示。
设计意图:练习第1题承接着例题而来,让学生更好地体会“性质”的应用,并为下一节学习分式的约分做铺垫;第2题,强化训练为了培养学生用“性质”解决问题的能力。
拓展训练:
课本第11页5.不改变分式的值,使下列分式分子和分母都不含“-”号
学生组内讨论,老师巡堂参与交流,引导学生发现规律,并综合各小组的不同意见,有针对性地进行讲解,归纳出变号法则。
分式的变号法则(板书)
分式本身及其分子、分母这三处的正负号中,同时改变两处,分式的值不改变,即:
设计意图:介绍分式的变号法则,是为了让学生结合有理数的除法法则,更深刻地理解分式的基本性质。
活动5:小结评价布置作业
小结:
1)分式的基本性质是什么?
2)运用分式基本性质时要注意什么?
3)分式变号的法则是怎样的?
展示问题,学生思考,并在老师的引导下,学生自己进行整理、归纳。
设计意图:通过小结,使学生对本节所学内容进一步系统化,使学生的知识结构更合理、更完善。
小结完成后,为了同学能够有针对性地进行小结,我准备了三个问题:
1)这节课你学到了什么?
2)这节课给你的印象最深的是什么?
3)你如何评价你自己、同学或老师的表现?
但在课堂上,不要限制他们,让他们畅所欲言,学生会有教师想象不到的精彩。
【布置作业】
下课铃响了,我布置作业:
1、课本p65的习题4;
补充作业:
布置作业:课本第12页习题16.1第12题;
设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。
这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。
比的基本性质说课稿评价篇二
1、教学内容:
《比例的意义和基本性质》是人教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等的基础上教学的,是本套教材教学内容的第三个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。
2、教学目标:
根据新课标要求和教材的特点,结合六年级学生的实际水平,可以确定以下教学目标:
(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。
(2)认识比例的各部分名称。
(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。
3、教学重、难点:
理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。
根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识
课堂学习是学生学习数学知识,发展能力的重要途经,因此我进行了如下设计:复习了什么叫做比?什么叫做比值?求下面各比的比值.目的就是为新授进行铺垫,搭建脚手架,同时也为学生后面区分比例和比打下基础。
在新授这个环节里我设计了四个部分:第一部分是教学比例的意义,运用比例的意义进行的练习;第二部分是学习比例的基本性质,运用比例的基本性质进行的练习;第三部分运用比例的意义和基本性质进行的练习;第四部分给出四个数让学生写出比例、和给一个乘法等式写出比例。
在第一部分里,我先让学生把相等的比写成等式的形式,为揭示比例的意义做铺垫。随着学生的汇报,教师有意识的将比值相等的比写在一行上,引导学生观察每两个比之间的关系,告诉学生像这样的式子叫做比例,给学生直观的印象。让学生抽象概括出比例的意义,培养学生的思维能力。教学比例的意义后,及时组织练习。判断两个比是否能组成比例,在这个过程中,不仅运用了比例的意义,而且对比的性质也有一定的运用,培养了学生从多中角度解决问题的能力,达到了熟练运用比例的意义解决问题的能力
第二部分:六年级的学生有了一定的自学探究的能力,教师给了学生一个自学提示,使学生在自学过程中,有顺序,有目的。在汇报比例的各部分名称和基本性质时都让学生举例说明,达到全体学生都能理解的目的。比例和比的区别是小组内研究讨论的一个重要问题,学生能从意义、性质、名称上去区分,从而使学生正确的区分比和比例。
第三部分:根据比例的意义和基本性质,判断下面哪组中的两个比可以组成比例.这样的题最能提高学生运用知识的灵活性。
第四部分:用四个数组比例,学生在组的过程中没有方法和顺序,那么,在交流过程中教师去引导学生发现方法,总结规律,使学生不仅要把题做对,而且要善于总结方法,指导自己更好的去做题。有了这道题,在下一题中,让学生通过一个乘法算式改写成比例式,就稍微容易些了,让小组内交流方法,培养学生善于总结的能力。
在课堂小结中让学生说出本节课印象最深的是什么,目的是让学生对本节课的重点有一个回顾过程,加深学生的印象。
课后练习中出了一个比灵活的开放题,目的是提高他们的综合用能力。让学有余力的学生有思维的空间。
比的基本性质说课稿评价篇三
1、教材的地位及作用
“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。
2、教学重点、难点分析:
教学重点:理解并掌握分式的基本性质
教学难点:灵活运用分式的基本性质进行分式化简、变形
3教材的处理
学习是学生主动构建知识的过程。学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。让学生自我构建新知识。通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用. 最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。
数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:
1、知识技能:1)了解分式的基本性质
2)能灵活运用分式的基本性质进行分式变形
2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。
3、解决问题:通过探索分数的基本性质,积累数学活动的经验。
4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。
1、教学方法
数学是一门培养人的思维,发展人的思维的重要学科。在新课程理念下,获得数学知识的过程比获得知识更为重要。基于本节课的特点,课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
2、学法指导
现代新教育理念认为,学习数学不应只是单调刻板,简单模仿,机械背诵与操练,而应该采用设置现实问题情境,有意义富有挑战性的学习内容来引发学习者的兴趣。,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究,主动总结,主动提高,突出学生是学习主体,他们在感知识知识的过程中无疑提高了探索、发现、实践、总结的能力。
3、教学手段
我所采用的教学手段是多媒体辅助教学法。
活动1 创设情境,引入课题
教师提出问题,下列分数是否相等?可以进行变形的依据是什么?需要注意的是什么?类比分数的基本性质,你能猜想出分工有什么性质吗?学生思考、交流,回答问题。在活动中教师要关注:(1)学生对学过的知识是否掌握得较好;(2)学生对新知识的探索是否有深厚的兴趣。
设计意图:通过具体例子,引导学生回忆分数的基本性质,再用类比的方法得出分式的基本性质。这样安排,首先激活了学生原有的知识,为学习分式的基本性质做好铺垫。体现了学生的学习是在原有知识上自我生成的过程。
活动2 类比联想,探究交流
教师提出问题:如何用语言和式子表示分式的基本性质?学生独立思考、分组讨论、全班交流。
设计意图:教师引导学生用语言和式子表示分式的基本性质,体现了学生的学习是在原有知识上自我生成的过程。这样安排,学生的知识不是从老师那里直接复制或灌输到头脑中来的,而是让学生自己去类比发现、过程让学生自己去感受、结论让学生自己去总结,实现了学生主动参与、探究新知的目的。
活动3 例题分析 运用新知
教师提出问题进行分式变形。学生先独立思考问题,然后分小组讨论。教师参与并指导学生的数学活动,鼓励学生勇于探索、实践,灵活运用分式基本性质进行分式的恒等变形。在活动中教师要关注:(1)学生能否紧扣“性质”进行分析思考;(2)学生能否逐步领会分式的恒等变形依据。(3)学生是否能认真听取他人的意见。
活动4 练习巩固 拓展训练
教师出示问题训练单。学生先独立思考完成,并安排三名同学板演。教师巡视,注意对学习有困难的学生进行个别辅导。在活动中教师要关注:(1)大部分学生能否准确、熟练完成任务;(2)学生能否用数学语言表述发现的规律;(3)学生在运算中表现出来的情感与态度是否积极。
设计意图:通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。第二个问题指明了分式的变号法则。
学生思考在教师的引导下整理知识、理顺思维。在活动中教师要关注:(1)学生对本节课的学习内容是否理解;(2)学生能否从获取新知的过程中领悟到其中的数学方法。
设计意图:学生对学习情况进行反思,主要包括:对自己的思考过程进行反思;对学习活动涉及的思想方法进行反思;对解题思路、过程和语言表述进行反思;等等。帮助学生获得成功的体验和失败的感受,积累学习经验。对所学内容进一步系统化,使学生的知识结构更合理,更完善。
比的基本性质说课稿评价篇四
《分数的基本性质》是九年义务教育六年制小学数学第十册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6三个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这三个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。
1.折--用三张同样大小的长方形纸条分别折出二等分、四等、八等分。
2.画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。
3.想--1/2、2/4、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的其他分数吧?你还能说出和"2/3"大小相等的分数吧?
4.问--ww"1/2=2/4=/4/8"中,你发现什么?
5.用--用已学过的"分数的基本性质"解决有关的数学问题。这样安排教学有以下几点好处:
(1)有利于知识的迁移。
让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。
(2)能发挥学生学习的主动性。
通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。
(3)提高了学生的学习能力。
通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探问题,培养学生概括问题的能力和解决问题的能力。
本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的教学模式进行教学。
1.创设情境,复习迁移。
为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:起发给每位学生三张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗?(电脑显示三张涂色的纸条,学生分别用分数1/2、2/4、4/8表示。)
这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。
2.设疑激思,获取新知。
"疑是思之始,学之端"。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:
(1)1/2、2/4、4/8这些分数有什么关系?
(学生会说这三个分数的大小相等。)
(2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?
(如果学生写错或写不出,待得出分数基本性质后再写)
(3)从"1/2=2/4=4/8"中,你发现了什么?
(让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)
(4)你对上面这句话觉得有什么问题吗?
(学生可能会提出地"相同的数"中"0"必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)
最后,让学生完整地概括出分数的基本性质。(老师揭示课题)
这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。
3.深化概念,及时反馈。
为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:
1.下面各式对吗?为什么?(让学生用手势表示对错)
(1)3/4=6/8(2)3/8=12/2(3)3/10=1/5
2.在()里填上合适的数。
()/6=()/36=8/12=2/()=()/24
3.把2/3和10/24化成分线是12而大小不变的分数。
4.把下面大小相等的两个分数用线连接起来。
4/51/64/94/612/16
3/42/320/256/368/18
以上各个教学环节的设计体现如下几点教学目标:
1.知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。
2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。
3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。
比的基本性质说课稿评价篇五
老师们:
大家好!今天我说课的内容是北师大版八年级下册数学第三章《分式》第一节第二课时《分式的基本性质》。下面,我将从九个方面对本课加以说明。
我的教学理念是:根据建构主义理论,以新课改理念为指导,以人为本,面向全体学生,从最后一名抓起,努力使我的课堂真正成为:民主的、平等的、开放的、和谐的、充满了激趣的、师生互动、交流的课堂。培养学生学习对生活有用的数学;学习对终生发展有用的数学!
八年级学生具备了一定的数学知识和技能,具有较强的争胜心和表现欲,迫切希望得到老师的表扬和鼓励;但思维的深度和广度还不够;需要老师巧妙设疑、灵活引导、及时激励。
本节教材是本单元的第一节,从知识结构来看,本节是学生在已经掌握分数的基本性质和分式的定义的基础上,进一步学习分式的基本性质。也为后面学习分式的有关运算打下基础;从研究方式上来看,它是自主探究——合作交流相结合的学习方法的又一次应用;从解决问题的思想方法来看,它强化了学生的类比转化数学思维能力,促进了数学修养的提高。所以这一节无论从知识性还是思想性来讲,在初中数学教学中都占有重要的地位。
根据教学大纲和学生的认知水平,我确定本节课教学目标是:
(一)知识与技能:
1、推导并掌握分式的基本性质,灵活运用分式的基本性质进行分式的变形。
2、了解分式约分的步骤和依据;掌握分式约分的方法。
3、了解最简分式的定义,能将分式化为最简分式。
(二)过程与方法:
使学生通过观察、讨论、类比等活动,获得一些探索性质的初步经验。
(三)情感与价值观:
1、通过与分数的类比,使学生初步掌握类比的思想方法:即类比— —联系— —归纳— —拓展。
2、培养学生与同伴的合作交流能力。
利用分式的基本性质约分。
分子、分母是多项式的分式约分。
根据本节课的内容特点及学生的实际水平,我采用启发式教学,采取类比、观察、讨论、归纳等方法,注重创设问题情景,巧妙设置问题链,充分暴露思维过程,发展学生的思维能力。
“授人以鱼,不如授人以渔”。 我设计的学法:自主探究——合作交流相结合;形式上有:自学、对学、群学、展示、点评等。
多媒体课件,充分利用电脑多媒体优化数学课堂教学,从生活实际出发,激发学生学习的兴趣,提高课堂效率。
1、下列各式中,属于分式的是( )
a、 b、 c、 d、
(一)、复习提问 温故知新
2、当x=____时,分式 没有意义。
3、分式的值为零的条件是。
设计意图:本环节复习前面学习的知识方法,使学生养成及时复习巩固的好习惯。
(二)、创设情景 导入新课
1、幼儿园阿姨要把3个苹果平均分给6个小朋友,每个小朋友得到多少苹果?
2、
3、分数的基本性质是什么?
设计意图:通过三个问题引导学生独立思考、回忆分数的基本性质,要抓住“分子与分母同时”“乘以(或除以)同一个”“不等于零”这几个关键字。为推导分式的基本性质打下基础。
(三)、自学释疑 合作交流
2、 类比分数的基本性质,你能得到分式的基本性质吗?说说看!
3、运用分式的基本性质时需要注意什么?
分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式
的值不变。这个性质叫做分式的基本性质。
学生归纳以下要点:①分子、分母应同时作乘、除法中的同一种变换;②所乘(或除以)的必须是同一个整式;③所乘(或除以)的整式应该不等于零。
在活动中教师要关注:
(1) 能否用数学语言表述新知识;
( 2 )学生对“性质”的运用注意事项是否理解。
设计意图:本环节设计采用循序渐进的原则,以问题为出发点,依照学生的认识规律设置一系列问题,通过学生的自学、讨论、归纳、发现,培养学生的类比、归纳能力。
(四)、训练操作 巩固新知
例2、下列分式的右边是怎样从左边得到的?
(1) (2)
学生讨论、交流、口答,老师指导、矫正。注意要暴露学生的思维过程,及时强调分式基本性质的运用。
反思:为什么(1)中有附加条件y≠0, 而(2)中没有附加条件x≠0?
练习:1、填空:(1)
反思:你是怎么想的?
2、下列各组中的分式,能否由左边变形为右边?
(1) 与 (2) 与
(3) 与 (4) 与
反思:运用分式的基本性质应注意什么?
(1) 都;(2)同一个;(3)不为零。
例3、化简下列分式:
学生先独立思考、作答 ,并安排两名同学板演。教师巡视,注意对学习有困难的学生进行个别辅导。
对问题(2),学生思考、归纳后,在小组进行交流,并综合各小组中同学的不同见解得出结论。
在活动中教师要关注:
(1) 大部分学生能否准确、熟练地完成任务;
(2) 学生能否用数学语言表述发现的规律;学生在运算中表现出来的情感与态度是否积极。
(3) 注意解题格式的强调。
强调:1、把一个分式的分子和分母的公因式约去,这种变形叫分式的约分.
2、分式约分的依据是什么?分式的基本性质
做一做:化简下列分式:(1)(2)
议一议:你对书上小颖和小明的解法有何看法?与同伴交流!
教师组织学生活动,并强调:分子和分母已没有公因式的分式叫
分式约分的注意事项:
1、当分子或分母是多项式时,应先 。
2、找公因式(数字取各数字的 ;字母取 的字母,并且要取相同字母的 次幂。)
3、约分要 ,结果要化成最简 或整式。
设计意图:通过设置以上几个问题让学生从不同角度去认识问题和解决问题,培养学生运用分式的基本性质进行分式的等值变形的技巧;掌握分式的约分的方法;会把分式化成最简分式。
(五)、课堂小结 回味反思
说说我们本节的收获吧!
1.本节课主要学习了那些知识?
2.应用分式的基本性质应注意什么?
3.化简分式我们应注意什么?
设计意图:通过这一环节,学生对学习情况进行反思,主要包括:对自己的思考过程进行反思;对学习活动涉及的思想方法进行反思;对解题思路、过程和语言表述进行反思;等等。帮助学生获得成功的体验和失败的感受,积累学习经验。
(六)、课堂小测 共同成长
化简下列分式:
设计意图:本环节考查了学生进行分式约分的能力;以便于教师及时指导学生。
(七)、布置作业 查缺补漏
必做题:课本第72页习题3.2【知识技能】
选做题:课本第73页习题3.2【数学理解】(3,4)
设计意图:作业布置注重了分层,让探究延伸到课外。
分式的基本性质
一、 分式的基本性质
注意:1、都;2、同一个;3、不为零
二、 分式的约分
三、 最简分式
设计意图:条理清晰,重点突出,便于学生对知识的理解与巩固。
九、说教学反思:
教完本节课,我感触最深的有以下几点:
1.教学过程中我强调要学生形成积极主动的学习态度,注重学生的知识建构过程,关注学生的学习兴趣和体验。
2.注重分类、归纳、类比、转化等数学思想的渗透。
3.注重面向全体学生,从最后一名抓起。
4. 注重对学生进行过程性评价,注重评价方式的多元化。
比的基本性质说课稿评价篇六
大家好,今天,我说课的内容是人教版实验教材五年级下册的《分数的基本性质》。我将从教材、教学目标、教学重点和难点、教学过程与板书设计等方面做一个说明,首先是说教材。
《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
接下来说说学情分析。学生在三年级上学期已经初步认识了分数,还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。
本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:
1、知识与能力目标:理解和掌握分数的基本性质,培养观察、比较及动手能力,进一步发展思维。
2、过程与方法目标:经历发现问题、探究问题、解决问题的全过程,体验解决问题策略的多样性。
3、情感态度与价值观目标:在探究活动中,获得成功体验,建立自信心,感受数学的严谨性。
根据教学目标和学生情况,我把本课的重点设定为:理解、掌握分数的基本性质。难点设定为:发现和归纳分数的基本性质,并用它解决相应的问题。
本着“以学生发展为本”的思想,按照学生学习的认知规律,在探究分数的基本性质过程中,主要采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法、组织练习法组织教学。
动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
为了全面准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了“创设情境,引发猜想 ——自主探索,寻找规律——比较归纳,揭示规律——分层练习,巩固深化——课堂小结 ,布置作业”五个环节。
(一) 创设情境,引发猜想。上课开始,我引入故事:从前有座山,山里有座庙,庙里住着一个慈母般的老和尚和三个调皮的小和尚,小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚烙了三张同样大小的饼想分给小和尚吃。还没给呢,小和尚就开始要了。第一个和尚说:“我要一块儿”;第二个和尚说:“我要两块儿”;第三个和尚说:“不行不行,我得多要点儿,我要四块儿”。 老和尚听了他们的话,二话没说,就把第一长饼平均分成四块儿,取其中的一块儿给了第一个和尚;接着又把第二张饼平均分成八块儿,取其中的两块儿给了第二个和尚;最后把第三张饼平均分成十六块儿,取其中的四块儿给了第三个和尚。故事讲完了,老师有一个问题,三个小和尚谁的饼多,谁的饼少,你知道吗? 先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。
(二) 自主探索,寻找规律。
1、小组合作,验证猜想。
这只是大家的猜想,究竟哪个和尚吃得多呢?亲自分一分,验证你们的猜想。
2、既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?
引导学生得出:这三个分数是相等关系,分数的分子和分母变化了但分数的大小不变。
3、老和尚把三张大小一样的饼分给小和尚一部分后,剩下的部分大小相等吗?通过观察演示得出3/4=6/8=12/16。
(三)比较归纳,揭示规律。
1、 通过演示,学生小组合作,集体交流,归纳性质。
2、师生共同总结规律,找出性质中的关键词,然后齐读3遍,注意关键的字词(同时,0除外)要重读。
3、现在,大家知道老和尚是运用什么性质分饼了吗?
4、沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。
(四)分层练习,巩固深化。
根据本节课的内容,在练习上我设计三个不同层次的练习,首先是针对大多数的基础性练习,如填空、判断。 其次是稍有变动的,需要结合分数与除法关系完成的变式练习。
(五)课堂小结,布置作业。
有层次的练习之后,我会及时引导学生回忆本节课学习了哪些内容,让学生说说有什么收获。学生在说的过程中进一步体会分数的基本性质,感受知识之间的内在联系,同时增强对迁移推理、猜想验证等数学思想的认识。作业也是必不可少的,针对今天学习的内容,我布置了三道题,有目的地让学生通过练习巩固所学知识。
1、填上合适的数,说说你填写的根据.
1/3 =()/6 10/15 =()/3 1/4 = 5/()
2、说一说下面各式运用分数的基本性质是否正确
5/24=5×2/24÷2=10/12 ( )
4/9=(4÷2)/(9÷3)=2/3 ( )
13/18=13+2/18+2=15/20 ( )
3、选择你喜欢的一道题来做
(1) 与1/2相等的分数有多少个?想像一下把手中的正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?
(2) 9/24和20/32哪一个数大一些,你能讲出判断的依据吗?
好的板书是一篇文章浓缩了的精华,是直观的教学方法,是课堂教学中师生双边活动的缩影,能直观形象地反映课堂教学的全过程。根据本节课的内容,我设计了如下板书:
分数的分子、分母同时乘以或除以相同的数,(0除外)分数的大小不变。这叫做分数的基本性质。
我的说课到此结束,谢谢大家!
比的基本性质说课稿评价篇七
尊敬的各位老师:
大家好!我是泰山小学的高崇辉老师,我今天说课的题目是比的基本性质。
首先,我来说一说教材,我讲的是九年义务教育五年制小学数学第九册63页比的基本性质,教材是在学生已经掌握了比和分数、比和除法的关系以及分数的基本性质和除法的商不变的规律的基础上进行教学的,根据本节课知识在教材中的地位和作用以及学生的认识发展规律,我确定了本节课的教学目标:
1、通过自主探索、比较类推出比的基本性质,掌握化简比的方法,并会利用比的基本性质把一个比化成最简单的整数比。
2、培养学生的迁移类推、抽象概括能力。
3、引导学生揭示知识间的联系,向学生进行对立统一的辩证唯物主义教育。
并将理解并掌握比的基本性质,作为本节课的教学重点,应用比的基本性质把比化成最简单的整数比作为本节课的教学难点,在教学中我主要采用了探究学习的方法,教学媒体的使用:多媒体。
接着我来说一说本节课的教学过程和设计意图。
上课伊始我询问学生:“同学们喜欢喝蜂蜜水吗?”大部分同学会说愿意并会表示他们愿意喝更甜一些的。这时我会适时的向学生说明其实小明同学和大家一样也喜欢喝甜的蜂蜜水,这不小明的妈妈给小明准备了两杯蜂蜜水,但只能选择其中的一杯,哪杯甜呢?这下难坏了小明,聪明的同学们,你们愿意帮助他吗?电脑演示多媒体课件演示:第一杯360毫升的水,40毫升蜂蜜;第二杯180毫升的水,20毫升蜂蜜;同学们会兴致盎然,想尽各种办法帮助小明。有的同学会根据商不变的规律确定选哪杯都可以,因为360毫升的水是40毫升蜂蜜的9倍,180毫升的水是20毫升蜂蜜的9倍即360÷40=180÷20;有的同学会根据分数的基本性质确定选哪杯都可以,因为40毫升蜂蜜是360毫升水的九分之一,20毫升蜂蜜是180毫升水的九分之一即40/360=20/180,学生会想尽各种办法帮助小明解决这个问题。
这部分的设计意图是每一个学生都是热情的,都是乐于助人的,尤其是愿意帮助同学解决问题,因此一听说帮助同学,学生会产生极大的兴趣兴趣就是学生思维的原动力,只要有兴趣,就会产生创造性的源泉。另外同学的困难又是学生熟悉的生活情境,这有利于学生凭借生活经验主动探索,实现生活经验数学化,同时感受到“数学源于生活”。
师:刚才同学们利用商不变的规律,分数的基本性质帮小明解决了问题。你们还记得它们的内容各是什么吗?
学生在师生互动,生生合作中说出商不变的规律,分数的基本性质的内容。屏幕出示文字内容。
我接着询问在分数的基本性质里,有哪些词很关键?在商不变的性质里,有哪些关键词?缺少他们行吗?为什么?
这回你们又会想到什么呢?(比的基本性质)那么,比的基本性质该是怎样的呢?本节课我们就一起来研究探讨它。
(板书课题:比的基本性质)
师:观察除法的基本性质(手指向商不变性质)与分数的基本性质,猜一猜,想一想,比的基本性质应该是怎样的呢?把你的想法在小组里说一说。
(1)小组讨论
(2)汇报结果:学生根据讨论结果发表意见。
(3)师生共同总结比的基本性质的内容。
(4)强调
学习了比的基本性质,你认为哪些词语是很重要,你想提醒同学们注意点什么?(同时、相同、0除外)
这一部分的设计意图是先通过学生回忆已学旧知,进而猜想比的基本性质,放飞了学生思维,让他们自主地依据已有知识经验,在观察、合作、猜想、交流中展开合理的想象与多角度思考,在有理有据表达、建立在对意义求真求准的对比中生成、完善了概念。也让学生体会到充分利用已有知识自学新知的学习方法,进一步弄清了比、除法、分数之间的联系与区别。然后通过引导学生用语言描述,共同完善比的基本性质,使学生在这一过程中,领悟了利用旧知学习新知的学习方法,沟通了知识间的联系,又培养了学生初步的类比推理能力。
1、说明。利用商不变性质,我们可以进行除法的简算;根据分数的基本性质,我们可以把分数约分成最简分数(板书:最简分数)。同样,应用比的基本性质,可以把比化成最简单的整数比。(板书:最简单的整数比)
2、讨论:怎么理解“最简单的整数比”这个概念?在小组里议一议。
3、指名汇报,形成共识:
㈠必须是一个比;㈡前项、后项必须是整数,不能是分数或小数;㈢前项与后项互质。
4、化简比
出示例1把下面各比化成最简单的整数比。
(1)14:21 (2)1/6 :2/9 (3)1。25:2
学生板演,其余同学各抒己见说出不同方法。
师生共同总结整数比、分数比、小数比的化简方法。
这一部分的设计意图是“最简单的整数比”是本节课教学的难点。这里摒弃了由典型的个例入手解释“最简单整数比”的从特殊到一般的认识过程,采用让学生先讨论、后汇报对这个概念的理解认识的方法,让学生在独立思考、互动交流中自发地尝试利用已有的知识来解读新概念。同时,教师试图通过对较简单的整数比的化简,给学生一个运用性质解决具体问题的范例,为前后项是分数、小数的比的化简作了“跳一跳,可摘到果子”式的充要铺垫。学生在小组内部交流基础上进行组间的合作交流,让每个学生充分展示自己的思维方法及过程,相互讨论分析,提示知识规律和解决问题的方法,在合作中学生互相帮助,实现学生互补,增强合作意识,提高交往能力,使学生思维进入高潮。
我设计了四部分练习题。
1、3:8=(3×2):(8×□)
2、15:10=(15÷□):(10÷5)
3、5:3=(5×□):(3×□)
这一部分的设计意图是学生加深对比的基本性质的理解,尤其是最后一题使学生在填空过程中体会到可以填“除0以外的所有相同的数”,培养学生的开放性思维。
(1)4 :15=(4×3):(15÷3) ( )
(2)3/5:4/7=(3/5×6):( 4/7×6) ( )
(3)10 :15=(10÷5):(15÷3) ( )
(4) 7 :9 =(7+5):(9+5) ( )
师:上课前老师统计了咱们班参加课外活动小组的人数,下面同学自己读题,然后试着解决这些问题,如果遇到困难同桌之间或小组之间可商量解决。
我们班共有学生48人,男生28人,女生20人:
(1)请写出我们班男生和女生的人数比,并将这个比化成最简单的整数比。
(2)在课外小组活动中,我们班参加美术小组的人数占全班人数的1/4,参加科技小组的人数占全班人数的3/8,请写出参加美术小组和科技小组的人数比,并将这个比化成最简单的整数比。
(3)参加体育小组的人数是舞蹈小组的1。5倍,请写出参加体育小组和舞蹈小组的人数比,并将这个比化成最简单的整数比。
从学生熟悉的生活情境入手,把学生引入到现实情境中进行“再创造”
活动有利于让学生感受到数学就在身边,使原来枯燥乏味的数学题有了“应用味”,使学生对数学产生浓厚的兴趣和亲切感,会用数学眼光看问题,用数学头脑想问题,增强学生用数学知识解决实际问题的意识。从而培养学生的实践能力。另外尊重学生各性,让课堂成为学生发挥个性的天地,成为自我赏识的乐园。
1:8=(1+4):(8+□) 6:10=(6-3):(10÷□)
让学生从实际出发,根据解决问题的条件作全面分析,周密思考,提高了学生全面分析及解决实际问题的能力,目的是培养学生辩证地看问题,培养学生创新精神。
比的基本性质,是同学们通过自己主动探索,合作研究发现的,并能根据这一性质解决实际问题,回顾我们的学习过程,谁来谈谈你的收获和感受。
这一部分是对学生学习的一种激励评价,使学生体验到主动探索,获取知识的喜悦,激发了学习兴趣,树立学习自信心。
以上就是我对本节课的教学设计,如有不当之处敬请各们老师批评指正。
比的基本性质说课稿评价篇八
各位老师:
大家好!我叫***,来自**。我说课的题目是《概率的基本性质》,内容选自于高中教材新课程人教a版必修3第三章第一节,课时安排为三个课时,本节课内容为第三课时。下面我将从教材分析、教学目标分析、教法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
1、教材所处的地位和作用
本节课主要包含了两部分内容:一是事件的关系与运算,二是概率的基本性质,多以基本概念和性质为主。它是本册第二章统计的延伸,又是后面"古典概型"及"几何概型"的基础。在整个教学中起到承上启下的作用。同时也是新课改以来考查的热点之一。
2、教学的重点和难点
重点:概率的加法公式及其应用;事件的关系与运算。
难点:互斥事件与对立事件的区别与联系
1.知识与技能目标
⑴了解随机事件间的基本关系与运算;
⑵掌握概率的几个基本性质,并会用其解决简单的概率问题。
2、过程与方法:
⑴通过观察、类比、归纳培养学生运用数学知识的综合能力;
⑵通过学生自主探究,合作探究培养学生的动手探索的能力。
3、情感态度与价值观:
通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。
采用实验观察、质疑启发、类比联想、探究归纳的教学方法。
1、创设情境,引入新课
在掷骰子的试验中,我们可以定义许多事件,如:
c1=﹛出现的点数=1﹜,c2=﹛出现的点数=2﹜
c3=﹛出现的点数=3﹜,c4=﹛出现的点数=4﹜
c5=﹛出现的点数=5﹜,c6=﹛出现的点数=6﹜
d1=﹛出现的点数不大于1﹜d2=﹛出现的点数大于3﹜
d3=﹛出现的点数小于5﹜,e=﹛出现的点数小于7﹜
f=﹛出现的点数大于6﹜,g=﹛出现的点数为偶数﹜
h=﹛出现的点数为奇数﹜
⑴以引入例中的事件c1和事件h,事件c1和事件d1为例讲授事件之的包含关系和相等关系。
⑵从以上两个关系学生不难发现事件间的关系与集合间的关系相类似。进而引导学生思考,是否可以把事件和集合对应起来。
「设计意图」引出我们接下来要学习的主要内容:事件之间的关系与运算
2、探究新知
㈠事件的关系与运算
⑴经过上面的思考,我们得出:
试验的可能结果的全体←→全集
↓↓
每一个事件←→子集
这样我们就把事件和集合对应起来了,用已有的集合间关系来分析事件间的关系。
集合的并→两事件的并事件(和事件)
集合的交→两事件的交事件(积事件)
在此过程中要注意帮助学生区分集合关系与事件关系之间的不同。
(例如:两集合a∪b,表示此集合中的任意元素或者属于集合a或者属于集合b;而两事件a和b的并事件a∪b发生,表示或者事件a发生,或者事件b发生。)
「设计意图」为更好地理解互斥事件和对立事件打下基础,
⑵思考:①若只掷一次骰子,则事件c1和事件c2有可能同时发生么?
②在掷骰子实验中事件g和事件h是否一定有一个会发生?
「设计意图」这两道思考题都很容易得到答案,主要目的是为引出接下来将要学习的互斥事件和对立事件,让学生从实际案例中体验它们各自的特征以及它们之间的区别与联系。
⑶总结出互斥事件和对立事件的概念,并通过多媒体的图形演示使学生们能更好地理解它们的特征以及它们之间的区别与联系。
⑷练习:通过多媒体显示两道练习,目的是让学生们能够及时巩固对互斥事件和对立事件的学习,加深理解。
㈡概率的基本性质:
⑴回顾:频率=频数/试验的次数
我们知道当试验次数足够大时,用频率来估计概率,由于频率在0~1之间,所以,可以得到概率的基本性质、
(通过对频率的理解并结合前面投硬币的实验来总结出概率的基本性质,师生共同交流得出结果)
3、典型例题探究
例1一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?
事件a:命中环数大于7环;事件b:命中环数为10环;
事件c:命中环数小于6环;事件d:命中环数为6、7、8、9、10环、
分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚
例2如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件a)的概率是1/4,取到方块(事件b)的概率是1/4,问:
(1)取到红色牌(事件c)的概率是多少?
(2)取到黑色牌(事件d)的概率是多少?
分析:事件c是事件a与事件b的并,且a与b互斥,因此可用互斥事件的概率和公式求解;事件c与事件d是对立事件,因此p(d)=1—p(c).
「设计意图」通过这两道例题,进一步巩固学生对本节课知识的掌握,并将所学知识应用到实际解决问题中去。
4、课堂小结
⑴理解事件的关系和运算
⑵掌握概率的基本性质
「设计意图」小结是引导学生对问题进行回味与深化,使知识成为系统。让学生尝试小结,提高学生的总结能力和语言表达能力。教师补充帮助学生全面地理解,掌握新知识。
5、布置作业
习题3、1a1、3、4
「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
五、板书设计
概率的基本性质
一、事件间的关系和运算
二、概率的基本性质
三、例1的板书区
例2的板书区
四、规律性质总结
比的基本性质说课稿评价篇九
一、说教材
1、说教学内容:
《比例的意义和基本性质》人教版教材数学六年级下册第三单元的内容,在第41页例2及课堂活动,第51页练习六中的第1、2、3题。
2、教材的地位与作用:
比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等基础上教学的。本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。
3、教学目标的确定
《新课程标准》明确了义务教学阶段数学课程的总目标应以知识与技能、过程与方法、情感和态度三方面来阐述,使学生得到充分、自由、和谐、全面地发展。因此,以《新课程标准》为依据,结合小学数学教材编排的意图,确立以下教学目标:
(1)知识与技能
①理解比例的意义,认识比例各部分名称,理解并掌握比例的基本性质。
②能运用比例的意义或基本性质判断两个比能否成比例,并会组比例。
③运用相关知识解决问题,提高解决问题的能力。
(2)过程与方法
引导学生通过观察、比较、计算、交流探索新知。
(3)情感、态度与价值观
在自主学习过程中体验发现数学规律的乐趣,培养学生用数学知识解决实际问题的能力。
4.教学重难点
教学重点:理解比例的意义与基本性质。
教学难点:运用比例的意义或性质判断两个比能否组成比例,并能正确地组比例。
5、教法、学法:
根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。
二、说程序设计
“比例的意义和基本性质”的学习基础是“比的意义和基本性质”,学生在单纯理解“比例的意义和基本性质”上没有多少困难,但是比和比例的意义容易混淆,基于此,我作了如下的教学设计。
(一)在引入上我直接提示课题,引起生对学过的比的知识的回忆。
“比例的意义和基本性质”的学习基础是“比的意义和基本性质”, 我注重从学生已有的知识出发,让学生复习了比和求比值的知识,比的基本性质,让生在复习旧知的基础上自然过渡到新知识的学习,让学生初步感到新旧知识的联系,在这种情景下,用出示例1进入对新知识的学习。
(二)教学新课
教学比例的基本性质,我采用小组合作学习方式,自主探究比例的基本性质。这样引导学生通过自己的努力去发现比例的秘密,整个环节力求体现学生自主探索、独立思考、合作交流的学习过程,从而提高学生的数学学习能力。教学完比例的基本性质后,告诉学生,判断两个比能否组成比例,除了根据比例的意义,也可根据比例的基本性来判断,为巩固练习一作一个铺垫提示。
(三)课堂活动
书上第50页,要求小组合作完成,改变了书中“任意抽出4张”的要求为“任意选出4个数字组成比例”,给学生足够的时间写比例,交流写法。
设计意图:巩固运用比例的意义和基本性质的知识,让学生在玩中学,激发学生的学习兴趣,鼓励学生小组合作的意识。
(四)巩固练习,形成技能
1、基本训练
(1)练习中的第1题,可用不同的方法来判断,先让学生独立判断,再全班交流。让学生在交流中互相学习。
(2)练习中的第3题,这儿的设计意图应该是:让学生根据当前所学的知识猜数,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是为下节课 “解比例”作准备。
比的基本性质说课稿评价篇十
我说课的内容是鲁教版义务教育课程标准实验教科书,七年级数学(下)第十一章第二节《不等式的基本性质》。下面,我从以下几个方面对本节课的教学设计进行说明。
第十一章《一元一次不等式和一元一次不等式组》是在学习了数轴、等式性质、解一元一次方程、一次函数的基础上,从研究不等关系入手,展开对不等式的基本性质、不等式的解集、解一元一次不等式(组)、一元一次不等式与一次函数的研究学习。本课题为第十一章第二节《不等式的基本性质》。它在教材中起着承上启下的作用。关于它的学习以等式的基本性质为基础,它是学生以后顺利学习一元一次不等式和一元一次不等式组的解法的重要理论依据,是学生后继学习的重要基础和必备技能。
知识目标:
1、经历不等式基本性质的探索过程,初步体会不等式与等式的异同。
2、掌握不等式的基本性质,运用不等式的基本性质将不等式变形。
能力目标:
1、培养学生类比、归纳、猜想、验证的数学研究方法。
2、发展学生的符号表达能力、代数变形能力。
3、培养学生自主探索与合作交流的能力。
情感目标:让学生感受生活中数学的存在,并且在自主探索、合作交流中感受学习的乐趣。
重点:掌握不等式的基本性质并能正确运用将不等式变形
难点:不等式基本性质3的运用
活动是影响人发展的决定性因素,学生的学习只有通过自主活动并从中体验、感悟、建构自己的知识经验,培养积极的学习情感,才能得到自身的发展。但学生主动参与学习活动的方向,活动过程的积极化离不开教师的“导”。本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动。在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
“教为不教,学为会学”,“授之以鱼”更要“授之以渔”。在教的过程中,关键是教学生的学法,本节课教给学生类比,猜想,验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
(一)本节教学将按以下五个流程展开:
回顾思考,引入课题
创设问题情景,探索规律
尝试练习,应用新知
总结反思,获得升华
布置作业,深化巩固
(二)教学过程
1、回顾思考,引入课题
观察下面两个推理,说出等式的基本性质
(1)∵a=b
∴a±3=b±3
a±(x2+2y)=b±(x2+2y)
(2)∵a=b
∴3a=3b
-a/4=-b/4
提出问题:那么不等式有没有类似的性质呢?引入课题。
[设计意图:“有效的教学一定要从学生已经知道了什么开始”。不等关系与相等关系有着辨证的关系。学生已经在六年级上册学习了等式的基本性质,因此,要类比等式的基本性质进行不等式基本性质的教学。课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而未得,口欲言而未能”的境界,使他们有兴趣的进入数学课堂,为学习新知识做好准备。]
2、创设问题情景,探索规律
问题1:在天平两侧的托盘中放有不同质量的砝码。
右低左高说明右边的质量大于左边的质量。往两盘中加入相同质量的砝码,天平哪边高,哪边低?减去相同质量的砝码呢?(拿一个天平让学生亲手操作,获得直观感受)
[设计意图:数学源于生活,问题1的设计是为了从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质]
问题2:在不等式的两边加上或减去相同的数,不等号的方向改变吗?
如不等式7>4,-1<3不等式的两边都加5,都减5。不等号的方向改变吗?你能得出什么结论?再举几例试试,验证你所得的结论正确吗?(让学生先独立思考,后合作交流)
一般学生会得到:不等式的两边都加上(或减去)同一个数,不等号的方向不变。
这时可提出问题:把“数”的范围扩大到整式可以吗?
学生讨论可能得出结论:可以,因为整式的值就是实数。
让学生归纳总结:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。(教师板书:不等式的基本性质1)
引导学生说出符号语言:
如果a
如果a>b,那么a+c>b+c,a-c>b-c(教师板书)
[设计意图:类比等式的基本性质,研究不等式的性质,让学生体会数学思想
方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,
让学生在合作交流中完成任务,体会合作学习的乐趣。]
问题3:若不等式两边同乘以或除以同一个数,不等号的方向改变吗?
如不等式2<3,两边同乘以5,同除以5(即乘以1/5),同乘以0,同乘以-5,同除以-5。你能得出什么结论?再举几例试试,验证你所得的结论正确吗?
(结合不等式基本性质1的探索方法,学生可能很快就探索出不等式的基本性质2、3)
让学生归纳总结:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
(教师板书:不等式的基本性质2,不等式的基本性质3)
引导学生说出符号语言:
如果a>b,c>0,那么ac>bc
如果a0,那么ac
如果a>b,c<0,那么ac
如果a
bc (教师板书)
比的基本性质说课稿评价篇十一我今天说课的内容是人教课标版教材五年级下册第四单元的内容《分数的基本性质》。
本节内容是属于“数与代数”知识领域。是在学生学习了分数的意义、分数大小的比较的基础上进行教学的。又与整数除法及商不变的性质有着内在的联系,更是分数的约分、通分的依据。为学生今后学习分数加减法计算、比的基本性质打下基础。因此,本节课的内容尤为重要,起到承前启后的作用,尤为重要。
本节教材围绕着分数基本性质的得出与应用,安排了两道例题。通过例1,概括出分数基本性质。通过例2,运用、巩固分数的基本性质。练习联系现实生活,让学生了解可以依据分数基本性质解决的实际问题。如练习十四的第2题、第5题、第9题和第10题。有利于通过应用,促进了学生们的掌握分数的基本性质,也有利于培养学生的数学应用意识。在本节教材中,还穿插安排了一个“生活中的数学”栏目,介绍了分数在日常生活中的一些应用。涉及洗手液的使用方法、足球比赛的进程、照相机的曝光速度。这些例子,有助于引起学生的兴趣,关注分数在现实生活中的种种应用。
以上就是我对教材的分析,下面我对学情和教法进行分析。五年级的学生认知结构中已经具有了抽象概念,因而具有逻辑推理能力,新旧知识迁移的能力,这些能力为本节课的学习做好了充分的准备。依据学生的认知规律,我在本节课的教学方法中力求做到为学生创设探究学习的情景;联系生活实际,让学生体会数学与生活的联系;改变学生的学习方式,运用合作学习,培养学生的协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以多种感官参与学习的全过程。我主要采用:创设情境引入新课、师生互动探讨新知、引导学生总结等教学方法。
根据以上分析。我认为本节课的教学目标有以下几点:
1、经历探索分数的基本性质的过程,理解分数的基本性质。
2、在教学过程中,发展学生合理的推理能力,并清晰的阐述自己的观点。
3、培养学生在合作中逐步形成评价与反思的意识。
4、在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。
我认为本节课的教学重点是:理解、掌握分数的基本性质。
难点是:发现和归纳分数的基本性质,以及应用它解决相应的问题。
下面说说我的教学过程:
我将本课的教学设计以下几个环节,
一、设疑激趣,引入新课
教育学家布朗曾提出:“情境通过活动来合成知识,兴趣是最好的老师”。
首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?
这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。
二、自主探索,学习新知
新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。
1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。
2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的'三个分数是什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。(随着学生的回答,老师将板书的三个分数用“=”连接,给出等式。)
3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?(教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)
师:谁能用一句话把这个变化规律叙述出来呢?
生:从左往右看,分数的分子、分母同时扩大了,也就是分子分母都乘了一个相同的数,但三个分数的大小没有变。
师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师是这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。
4、让学生从右到左观察等式分子和分母又是如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。
5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。
结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。
6.教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。学生自己小结方法。
教育家波利亚指出:学习任何新知的最佳途径是由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。
三、分层练习,巩固深化
只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。
1、涂一涂练习14,第1、7题。
因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。
2、说一说完成练习14,第8题
我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。
3、想一想:第5、9、10题(选择一题做为作业)
在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。
四、畅谈收获,小结全课
让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。
整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。
比的基本性质说课稿评价篇十二
本课题属于“物质构成的奥秘”主题中的原子、分子部分,教学内容是上海教育出版社《化学(九年级第一学期)》的第二单元“构成物质的微粒”中有关微粒的基本性质的部分。本课中的微粒知识要为第二单元物质的量和质量守恒定律等教学内容奠定基础,更是为了构建全面的、科学的微粒观做好准备。
本节课的教学希望引导学生从变化的、不一样的角度看世界,通过常见的化学实验、实验现象去推理背后的性质,通过事物现象看本质,进一步提升学生的思考、分析、思辨的能力。为今后学习水的性质,如水的缔合性质,水溶液、乳浊液的知识打下伏笔,从微观角度来理解物理、化学变化,用微观理论来指导学习物质的转化。
学生已经在科学课中认识到了微观粒子的存在,在上海教育出版社《科学(七年级第二学期)》第十一章“从宇宙到粒子”的第二节物质的粒子模型中,学习过物质的粒子构成相关内容。因此本节课在这些前概念的基础上,进一步认识微粒的一些基本性质。
同时学生具有一定化学用语及实验仪器的使用基础,但是在实验的过程中,却很少从自身思考过“想观察什么、能观察什么、怎么观察”,而往往都是照方抓药,教师怎么布置就怎么做,教师说要观察什么就看什么,有时候即使观察到不一样的现象也很快被当成实验失误而忽略过去,学生的思维往往停留在低阶思维活动。
布卢姆把教学目标分成六个等级,低阶思维活动三个等级:识记:背诵、默写;理解:用自己的话解释;应用:直接套用。高阶思维活动三个等级:分析:辨析、判断、推论; 评价:讲自己的观点;创新思维活动:创思、创意、创作。教学目标对大多数的课来说还基本停留在低阶思维活动中。因此本节课中对于“微粒间的间隙”的这个教学环节中,并不是事先划好体积的标线,教师混合后提问:“我们来看看有什么变化?”。而是让学生自己去辨析,混合酒精与水后我们能观察到什么现象,有什么方法来观察,让学生体会到观察的角度、使用的仪器不同会得到不同的推断结论。
由于初中的学生并没有进行选拔考试,同校学生之间的差异往往较大,粗放的教学以所有学生为对象,只求完成任务,不顾学生差异,所以教学质量只维持在一般水平。精细的教学关注每位学生的学习,采用差异教学对策,应对每位学生不同的需求。就要进行分层教学,学校分层、班内分层、教学分层、递进教学等,但在学校没有进行分层化的时候,要在实验教学过程中完成分层教学,光靠一位教师很难完成,差异教学对策除了分层递进教学中对不同学生设置不同的教学目标,本校首先尝试在实验教学过程中引入第二位教师即“双师制”开展实验教学活动,在学生的实验活动中在同一班级采用分组学习、复式教学之外,教师共同参与到学生小组交流、实验操作等等活动中去。以便教师更好地点拨,开展辨析、判断、评价、建构等活动,对学生的认知与思维进行修补或完善,从中培养智能。
以“知识与技能”为主的教学目标,是短周期目标,在教学结束时可以检查其达成度;而“过程与方法”、“情感态度与价值观”是长周期目标,需要由课堂里的“情绪体验”、“高阶思维活动”量的积累到质的变化的过程,所以要在课堂里伴随教学内容体现与关注,因此在本堂课中采用以上的教学设计方法,但要有明显效果是需要一段时间体验、积累的结果。
1、通过高锰酸钾与水混合的实验,掌握微粒的性质“动”、“小”的特点,同时能根据对比实验得出温度的变化对“动”的影响。
2、通过对酒精与水的混合实验的辨析,得出微粒的其他性质“间隙”,根据学生情况选择性拓展“微粒间的作用力”。
3、从微观层面认识物质的构成,为今后进一步从本质上认识物质的变化打下基础。
4、通过小组间的交流,分析不同的观察角度、观察的方法在化学实验过程的作用,增强化学实验探究能力、体验化学实验过程。
从现象明显的实验开始观察,学生回忆起科学课学过的微粒知识,认识微粒的存在。通过实验现象得出微粒在不停运动,并推测微粒很小。感悟设计不同的实验能帮助理解不同的性质。
从一堆手到其中一只手,再到不断被放大的手部皮肤,学生惊讶于照片中微观世界有别于宏观世界的景象,激发了学生学习微粒性质的积极性。
科学家探索微观世界的过程
马赫质疑原子存在的精神
介绍原子有多小
人们看见原子到可以移动原子
化学研究的对象是物质微粒,虽然无法用肉眼直接观察,但确实存在。今天通过实验来研究微粒性质
同时在同体积冷水、热水中,分别滴加1滴高锰酸钾溶液,能观察到什么现象?有怎样的思考?
取1ml高锰酸钾溶液稀释到10倍,再稀释到100倍,能观察到什么?又有怎样的思考?
人类探索微观世界的历史是曲折的,感受科学家严谨、执着的科学精神,体验现代科学创造的惊喜,学生对化学学科的认识逐渐清晰,尊重之情油然而生。
通过形象的类比、生动的语言表述体会微粒到底有多小。
——微粒间存在间隙
学生2人一组利用实验仪器,设计实验来证明
实验中,发现还能产生哪些思考?
由实验引发的其他思考
课后讨论及习题布置
引入“双师制”加强师生交流,及时点拨、反馈实验中出现的问题。通过学生的自主实验打开思路,切身体会合适的实验仪器及实验方法对科学观察的重要性,学生在实验、发现、思考中体会探索化学奥秘的艰辛与快乐。
比的基本性质说课稿评价篇十三
各位老师:
大家好!我今天说课的题目是《比的基本性质》。
本章是九年义务教育数学六年级第一册第三章比和比例,之前已经学习了分数,通过本章的继续探讨将为今后学习正比例函数和反比例函数等打下必要的基础。我讲的是第三章第二节比的基本性质,这一节分两课时,我主要说的是第一课。这一课是在学生已经掌握了比的意义,比和分数、比和除法的关系以及分数的基本性质和除法的商不变性质的基础上进行教学的,因此在比和比例这章中起承上启下的作用。
根据本节课知识在教材中的地位和作用以及学生的认识发展规律,我确定了本节课的教学目标:
知识与能力:
1、让学生经历发现、总结比的基本性质的过程,在感受和理解比的基本性质的发生和发展的过程中培养学生的创新精神;
2、使学生在小组探究中掌握运用比的基本性质把一个比化成最简单的整数比的方法,培养学生解决简单实际问题的能力;
3、尊重学生的个性,注重算法多样化,使学生在交流、争论中培养学生的独立思考能力和创造能力。
过程与方法:
1、经历比的基本性质的探索过程,引导学生初步认识从“特殊”到“一般”的规律,将未知转化为已知,合理运用归纳思想、整体思想,发展学生的逆向思维,渗透探索问题的思想与方法;
2、在形成猜想与作出决策的过程中,形成解决问题的一些基本策略,发展实践能力。
情感态度与价值观:
1、本节课突出学生的主体地位,让学生高高兴兴地进入数学世界,在探索中激发兴趣,从发现中寻找快乐;
2、培养学生做事、待人应具体问题具体分析的良好习惯;
3、由旧知识引入新知识,培养学生应用数学的意识,并激发学生学习数学的兴趣;
4、通过由旧到新、由新到旧的训练发展学生主动探索,合作交流的意识。
重点:比的基本性质及运用比的基本性质进行化简,通过同学们自主探究,突出重点;
难点:运用比的基本性质计算,通过师生交流互动突破难点。
教法:在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:有分数的基本性质作为基础,我采用自主探究,合作交流的教学方法。
学法:从猜想——合作交流验证——发现,即在教学过程中创设教学情景,注重教师的导向作用和学生的主体作用。
1.创设生活情境,以激发学生的探索欲望
上课开始,我询问学生:“同学们喜欢喝菓珍吗?”大部分同学会说愿意并会表示他们愿意喝更甜一些的。这时我会适时的向学生说明其实小明同学和大家一样也喜欢喝甜的菓珍,这不小明的妈妈给小明准备了三杯菓珍,但只能选择其中的一杯,哪杯甜呢?这下难坏了小明,聪明的同学们,你们愿意帮助他吗?多媒体课件演示:第一杯100毫升的水,10克菓珍;第二杯200毫升的水,20克菓珍;第三杯400毫升的水,40克菓珍.同时我也以此在讲台上做了这个实验,同学们会兴致盎然,想尽各种办法帮助小明。
(这样的设计意图是因为每一个学生都是热情的,都是乐于助人的,尤其是愿意帮助同学解决问题,因此一听说帮助同学,学生会产生极大的兴趣,兴趣就是学生思维的原动力,只要有兴趣,就会产生创造性的源泉。另外小明的困难又是学生熟悉的生活情境,这有利于学生凭借生活经验主动探索,实现生活经验数学化,同时又感受到“数学源于生活”。)
2.引导学生发现规律,总结比的基本性质
同学们帮助小明解决问题,有的利用商不变性质,有的利用分数的基本性质。学生在师生互动中说出商不变性质,分数的基本性质的内容。屏幕出示文字内容。我接着询问在分数的基本性质里,有哪些关键词?在商不变的性质里,有哪些关键词?缺少他们行吗?为什么?通过类比让学生想到比的基本性质,从而引出课题。
(这样的设计意图是先通过学生回忆已学旧知,进而猜想比的基本性质从而引出课题,放飞了学生思维,让他们自主地依据已有知识经验,在观察、合作、猜想、交流中展开合理的想象与多角度思考。)
接下来,让学生观察商不变性质与分数的基本性质,猜一猜,想一想,比的基本性质应该是怎样的呢?小组讨论,学生根据讨论结果发表意见,师生共同总结比的基本性质的内容。最后强调学习了比的基本性质,哪些词语是很重要,提醒同学们注意“同时、相同、0除外”这些关键词。
(这样的设计意图是让学生体会到充分利用已有知识自学新知的学习方法,进一步弄清了比、除法、分数之间的联系与区别。然后通过引导学生用语言描述,共同完善比的基本性质,使学生在这一过程中,领悟了利用旧知学习新知的学习方法,沟通了知识间的联系,又培养了学生初步的类比推理能力。)
3.理解最简整数比
通过类比让学生明白利用商不变性质,我们可以进行除法的简算;根据分数的基本性质,我们可以把分数约分成最简分数。同样应用比的基本性质,可以把比化成最简单的整数比。小组讨论怎么理解“最简单的整数比”这个概念?然后达成共识:(1)是一个比;(2)前项、后项必须是整数,不能是分数或小数;(3)前项与后项互素。
(这样的设计意图是“最简单的整数比”是本节课教学的难点,所以先类比然后让学生讨论最后对这个概念产生共识的方法,让学生在独立思考、互动交流中自发地尝试利用已有的知识来解读新概念。)
4.教学例题,加深对知识的理解
例1 化简下列各比:
(1)(2) 0.65:1.3 (3) :(4)1.25升:375毫升
化简之后让学生小结(1)分数的化简,用约分方法就可以;
(2)两个小数的比,通常先化成整数,再化简;
(3)带分数与分数的比,先将带分数化成假分数,然后再化简;
(4)两个同类量的比,单位不统一时,先化单位一致,再化简。
(这样的设计意图是试图通过对较简单的整数比的化简,给学生一个运用性质解决具体问题的范例,让每个学生充分展示自己的思维方法及过程,相互讨论分析,提示知识规律和解决问题的方法,在合作中学生互相帮助,实现学生互补,增强合作意识,提高交往能力。)
5.实践练习,巩固知识
练习1 小蜗牛找家(口答)
六个家分别是6:30, 0.1:0.4, 2:6, 2:8, :1, 16:20
五个蜗牛分别是4:5, 1:3, 1:4, 1:5, 2:3找到后连接起来。
(这样的设计意图是使原来枯燥乏味的数学题有了“趣味性”,使学生对数学产生浓厚的兴趣和亲切感,从而调动课堂气氛。)
练习2 填空
1、3:8=(3×2):(8×□)
2、15:10=(15÷□):(10÷5)
3、5:3=(5×□):(3×□)
(这一部分的设计意图是使学生加深对比的基本性质的理解,尤其是最后一题使学生在填空过程中体会到可以填“除0以外的所有相同的数”,培养学生的开放性思维。)
练习3判断下列各题
(1) 16 ︰4的最简比是4。 ( )
(2) 5︰2.5 的比值是2。 ( )
(3) 6 ︰0.3 的最简比是20 ︰1。 ( )
(4)比的前项和后项都乘或都除以相同的数,比值不变。 ( )
(这一部分的设计意图是题目的多样性使学生更加深刻的理解比的基本性质的概念。)
练习4化简下列各比
(1)48:64 ; (2)4.6:6.9 ; (3)220cm:1.1m ; (4)1.5升:720毫升
(这一部分的设计意图是进一步巩固知识,使学生清楚化简比它是为了得到一个最简单的整数比,结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数或整数的形式。求比值是为了得到一个数,结果可以写成分数、小数,也可以是整数。)
拓展练习:
为迎世博完成一批纪念品制作,甲单独作20天完成,乙单独作30天完成。
(1)写出甲、乙完成这批纪念品制作所用的时间比,并化简。
(2)写出甲、乙完成这批纪念品制作的工作效率比,并化简。
(这一部分的设计意图是让学生从实际出发,根据解决问题的条件作全面分析,周密思考,提高了学生全面分析及解决实际问题的能力,目的是培养学生辩证地看问题,培养学生创新精神。)
6.课堂小结,回顾所学知识
比的基本性质,是同学们通过自己主动探索,合作研究发现的,并能根据这一性质解决实际问题,回顾我们的学习过程,谁来谈谈你的收获和感受。
(这一部分是对学生学习的一种激励评价,使学生体验到主动探索,获取知识的喜悦,激发了学习兴趣,树立学习自信心。)
以上就是我对本节课的教学设计,如有不当之处敬请各们老师批评指正。
比的基本性质说课稿评价篇十四
尊敬的各位领导,老师们,大家好!这天,我很高兴能站在那里,向大家展示我的说课。我的说课资料是《分数的基本性质》。我将从以下这些方面来进行说明。
《分数的基本性质》是人教版九年义务教育小学数学第十册中的资料。本节课资料是在分数的好处,以及分数与除法关系的基础上进行教学的。是后面进一步学习约分、通分以及分数运算的重要依据,因此本节资料将起着举足轻重的作用。
根据教材资料及学生的认知水平,我制定了以下教学目标:
1..使学生理解与掌握分数的基本性质。
2.培养学生观察、比较、分析、概括等方面的潜力。
为了使学生成为课堂的主人,我巧妙的扮演着引导着、组织者的主角。设计了情景设疑、观察发现、小组合作的教学方法。
新课程标准提倡:过程重于结果。有效的数学活动不能单纯的依靠模仿与记忆。因此我引导学生去动手操作,自主探究,游戏比赛等形式来组织教学。
结合五年级学生的理解潜力和年龄特征,我将本课的教学,设计了四个环节。
(一)、创设情境、引发猜想(课件)
首先、我为学生带来了一个猴王分饼的故事:猴山上的猴子们都爱吃猴王做的饼。一天,猴王做了三张同样大的饼。猴王把第一张饼平均切成了两块,给了猴1一块。(课件)猴2看见了,眼馋的说:“猴王,猴王,我要两块。”猴王笑眯眯的说:“别急,别急,给你两块。”只见猴王把第二张饼平均分成了四块,给了猴2两块。(课件)猴3更贪心:“我要六块,我要六块。”猴王想了想,把第三张饼拿出来,平均切成了十二块,果真给了猴3六块。
“同学们,你们听完故事后,觉得哪知猴子分得饼最多?”
一上课,先听一段故事,学生们自然十分乐意,并会立即被吸引,用心的思考故事中的问题。透过这样的故事设疑,立刻激起了学生探求新知的欲望。
(二)、动手操作、初步感知(课件)
我让学生把准备好的三张圆片,拿出来代替猴王做的饼,分别按照折,画,涂的步骤,表示出每只猴子所得的饼,并用分数表示涂色部分。在这个过程中,学生必然会对那三个图形进行观察和比较,从中有所发现。(课件)透过多媒体的直观演示,学生更加确定,三只猴子分的饼确实一样多,有了实物的直观比较,学生不难理解,三个分数大小相等。但是为何分数的分子、分母不同,大小却相等?在此处,又设下悬疑,充分调动了学生的好奇心。这一情境的设置,主要是让学生在动手操作过程中不仅仅复习了分数的好处,为下面导入新知作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,营造出良好的学习开端。之后,我因势利导,安排下一环节:
(三)比较归纳、揭示规律(课件)
(1)我板书这组分数后,请学生观察:从左往右看,分子是怎样变的?分母是怎样变的?此时我将主动权全都交给了学生,先独立思考,然后在四人小组中交流讨论,最后汇报结果。有的小组认为分子加了1,分母加了2等。我都笑而不答。而是鼓励学生逐一去验证各种猜想是否具有规律性。使学生在探索中发现,在发现中成长。直到有些学生发现分数的分子分母同时乘了2和3时,我及时给予了肯定和表扬。此时,为了突破本节课的重难点,我设计了一道填空题,能够很好的引导学生概括出这一发现,并让多名学生说一说。这样的设计,既培养了学生的概括潜力,并为进一步学习增强了信心。在此基础上,我再布置一个任务:你再从右往左看,又有什么规律?有了前面的经验,这时学生很快得出:分数的分子、分母同时除以一个相同的数,分数的大小也不变。
(2)就在学生享受成功的喜悦时,我抛出了一个问题:分数的分子分母如果同时乘或除以0,会是什么结果?学生顿时领悟:要0除外。
(3)最后,我推荐学生用一句话来归纳这两个发现,师生共同完善规律。此时我才板书课题,并告诉学生这一规律就叫分数的基本性质,使学生明确了本节课的教学资料。
(4)此刻,学生明白了聪明的猴王原先是利用分数的基本性质来分饼的。即满足了猴子们的要求,又分的那么公平。(课件)如果猴4想要八块怎样办?如此设计,既首尾呼应,又培养了学生灵活解决实际问题的潜力。
课堂的高潮之后,我启发学生还能够用商不变的性质来说明分数的基本性质,沟通新旧知识的联系。
(四)多层联系、巩固深化
练习的设计是巩固新知最有效的方法。我尽量给枯燥的练习赋予丰富多彩的形式。因此我精心设计的整套练习都是以游戏加比赛的方式来进行。(课件)首先,我安排男、女生以抢答的形式,来填空,重点要让学生说出解题依据。之后,我又设计了师生互动的游戏:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在两个小组抢摘苹果的游戏中结束本节课的教学活动。
说说我的板书设计,它遵循了目的性原则、概括性原则、直观性原则,能帮忙学生把整堂课的学习资料融入大脑。
总结:我在整堂课的设计中努力体现“趣”“实”“活”三个字。以猴王分饼为主线,贯穿全文。由情景导入到动手操作,自主探究,最后归纳规律,使学生不仅仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦。新课程标准的要求得到了完美体现。
我的说课到此结束,谢谢大家。
比的基本性质说课稿评价篇十五
我今天说课的题目是《不等式的基本性质》,主要分四块内容进行说课:教材分析;教学方法的选择;学法指导;教学流程。
1.教材的地位和作用
本节课的内容是选自人教版义务课程标准实验教科书七年级下第九章第一节第二课时《不等式的基本性质》,这是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。
2.教学目标的确定
教学目标分为三个层次的目标:
⑴知识目标:主要是理解并掌握不等式的三个基本性质。
⑵能力目标:培养学生利用类比的思想来探索新知的能力,扩充和完善不等式的性质的能力。
⑶情感目标:让学生感受到数学学习的猜想与归纳的思维方式,体会类比思想和获得成功的喜悦。
3.教学重点和难点
不等式的三个基本性质是本节课的中心,是学生必须掌握的内容,所以我确定本节的教学重点是不等式三个基本性质的学习以及用不等式的性质解不等式。本节课的难点是用不等式的性质化简。
本节课在性质讲解中我采取探索式教学方法,即采取观察猜测---直观验证---托盘实验---得出性质。使学生主动参与提出问题和探索问题的过程,从而激发学生的学习兴趣,活跃学生的思维。为了突破学生对不等式性质应用的困难,采取了类比操作化抽象为具体的方法来设置教学。整节课采取精讲多练、讲练结合的方法来落实知识点。
鉴于七年级的学生理解能力和逻辑推理能力还比较薄弱,应以激励的原则进行有效的教学。鼓励学生一种类型的题多练,并及时引导学生用小结方法,克服思维定势。
例题讲解采取数形结合的方法,使学生树立“转化”的数学思想。充分复习旧知识,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。
1.创设情境,复习引入
等式的基本性质是什么?
学生活动:独立思考,指名回答.
教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.
请同学们继续观察习题:
观察:用“”或“”填空,并找一找其中的规律.
(1)55+2____3+2,5-2____3-2
(2)–1,-1+2____3+2,-1-3____3-3
(3)6>2,6×5____2×5,6×(-5)____2×(-5)
(4)–2(-2)×6____3×6,(-2)×(-6)____3×(-6)
学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.
设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.
不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.
学生活动:观察思考,猜想出不等式的性质.
教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”
师生活动:师生共同叙述不等式的性质,同时教师板书.
不等式基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.
对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?
学生活动:观察③④题,并将题中的5换成2,-5换成一2,按题的要求再做一遍,并猜想讨论出结论.
观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?为什么?
师生活动:由学生概括总结不等式的其他性质,同时教师板书.
不等式基本性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变.
不等式基本性质3不等式两边都乘(或除以)同一个负数,不等号的方向改变.
师生活动:将不等式-2<3两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.
学生活动:看课本第124页有关不等式性质的叙述,理解字句并默记.
强调:要特别注意不等式基本性质3.
实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.
学生活动:思考、同桌讨论.
归纳:只有乘(或除以)负数时不同,此外都类似.
(1)如果x-54,那么两边都可得到x9
(2)如果在-78的两边都加上9可得到
(3)如果在5-2的两边都加上a+2可得到
(4)如果在-3-4的两边都乘以7可得到
(5)如果在80的两边都乘以8可得到
师生活动:学生思考出答案,教师订正,并强调不等式性质的应用.
2.尝试反馈,巩固知识
请学生先根据自己的理解,解答下面习题.
例1 利用不等式的性质解下列不等式并用数轴表示解集.
(1)x-7>26(2)-4x≥3
学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.
教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.
解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.
(四)总结、扩展
本节重点:
(1)掌握不等式的三条基本性质,尤其是性质3.
(2)能正确应用性质对不等式进行变形.
(五)课外思考
对比不等式性质与等式性质的异同点.