当前位置:网站首页 >> 作文 >> 2023年八年级上册数学知识归纳人教版(4篇)

2023年八年级上册数学知识归纳人教版(4篇)

格式:DOC 上传日期:2023-04-05 11:08:24
2023年八年级上册数学知识归纳人教版(4篇)
时间:2023-04-05 11:08:24     小编:zdfb

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。

八年级上册数学知识归纳人教版篇一

※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.

如:

※2.概念内涵:

(1)因式分解的最后结果应当是“积”;

(2)公因式可能是单项式,也可能是多项式;

(3)提公因式法的理论依据是乘法对加法的分配律,即:

※3.易错点点评:

(1)注意项的符号与幂指数是否搞错;

(2)公因式是否提“干净”;

(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.

2.运用公式法

※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.

※2.主要公式:

(1)平方差公式:

(2)完全平方公式:

¤3.易错点点评:

因式分解要分解到底.如就没有分解到底.

※4.运用公式法:

(1)平方差公式:

①应是二项式或视作二项式的多项式;

②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;

③二项是异号.

(2)完全平方公式:

①应是三项式;

②其中两项同号,且各为一整式的平方;

③还有一项可正负,且它是前两项幂的底数乘积的2倍.

3.因式分解的思路与解题步骤:

(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

4.分组分解法:

※1.分组分解法:利用分组来分解因式的方法叫做分组分解法.

如:

※2.概念内涵:

分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.

※3.注意:分组时要注意符号的变化.

5.十字相乘法:

※1.对于二次三项式,将a和c分别分解成两个因数的乘积,且满足,往往写成的形式,将二次三项式进行分解.

如:

※2.二次三项式的分解:

※3.规律内涵:

(1)理解:把分解因式时,如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同.

(2)如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p.

※4.易错点点评:

(1)十字相乘法在对系数分解时易出错;

(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.

1.必须熟悉各种基本题型并掌握其解法。

课本上的每一道练习题,都是针对一个知识点出的,是最基本的题目,必须熟练掌握;课外的习题,也有许多基本题型,其运用方法较多,针对性也强,应该能够迅速做出。许多综合题只是若干个基本题的有机结合,基本题掌握了,不愁解不了它们。

2.在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。

数学是思维的世界,有着众多思维的技巧,所以每道题在命题、解题过程中,都会反映出一定的思维方法,如果我们有意识地注重这些思维方法,时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时在解这一类的题目时就易如反掌了;同时,掌 握了更多的思维方法,为做综合题奠定了一定的基础。

3.多做综合题。

综合题,由于用到的知识点较多,颇受命题人青睐。做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。“多做练习”要长期坚持,每天都要做几道,时间长了才会有明显的效果和较大的收获。

初中数学的快速记忆法之歌诀记忆

就是把要记忆的数学知识编成歌谣、口诀或顺口溜,从而便于记忆。比如,量角的方法,就可编出这样几句歌诀:“量角器放角上,中心对准顶点,零线对着一边,另一边看度数。”再如,小数点位置移动引起数的大小变化,“小数点请你跟我走,走路先要找准‘左’和‘右’;横撇带口是个you,扩大向you走走走;横撇加个zuo,缩小向zuo走走走;十倍走一步百倍两步走,数位不够找‘0’拉拉钩。”采用这种方法来记忆,学生不仅喜欢记,而且记得牢。

八年级上册数学知识归纳人教版篇二

基础知识梳理

(一)、基本概念

1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质

(1)全等三角形对应边相等;(2)全等三角形对应角相等;

3、全等三角形的判定方法

(1)三边对应相等的两个三角形全等。sss

(2)两角和它们的夹边对应相等的两个三角形全等。asa

(3)两角和其中一角的对边对应相等的两个三角形全等。aas

(4)两边和它们的夹角对应相等的两个三角形全等。sas

(5)斜边和一条直角边对应相等的两个直角三角形全等。hl

4、角平分线的性质及判定

性质:角平分线上的点到这个角的两边的距离相等

判定:角的内部到角的两边的距离相等的点在角的平分线上

(二)灵活运用定理

1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找:

①夹边相等(asa)②任一组等角的.对边相等(aas)

(2)已知条件中有两边对应相等,可找

①夹角相等(sas)②第三组边也相等(sss)

(3)已知条件中有一边一角对应相等,可找

①任一组角相等(aas 或 asa)②夹等角的另一组边相等(sas)

证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:

1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);

2.回顾三角形判定公理,搞清还需要什么;

3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

八年级上册数学知识归纳人教版篇三

三角形的稳定性

1. 三角形具有稳定性

2. 四边形及多边形不具有稳定性

要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。 11.2 与三角形有关的角

第1课时三角形的内角

1. 三角形的内角和定理

三角形的内角和为180°,与三角形的形状无关。

2. 直角三角形两个锐角的关系

直角三角形的两个锐角互余(相加为90°)。 有两个角互余的三角形是直角三角形。 第2课时三角形的外角

1. 三角形外角的意义

三角形的一边与另一边的延长线组成的角叫做三角形的外角

2. 三角形外角的性质

三角形的一个外角等于与它不相邻的两个内角之和。 三角形的一个外角大于与它不相邻的任何一个内角。

八年级上册数学知识归纳人教版篇四

多边形

1. 多边形的概念

在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。多边形的边与它邻边的延长线组成的角叫做外角。

连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为

2. 凸多边形

画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。

3. 正多边形

各角相等,各边相等的多边形叫做正多边形。(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)

多边形的内角和

1. n边形的内角和定理

n边形的内角和为(n2)180°

2. n边形的外角和定理

多边形的外角和等于360°,与多边形的形状和边数无关。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服