在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
列方程解决实际问题二教学反思篇一
列方程解决实际问题,是新课标教材中使用比较多的一种解决逆思维的实际问题的解题方法,它改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础,易于学生运用知识的正迁移、结合思维方法正确解决此类的实际问题,学生学得轻松、灵活、有效,很好地提高了课堂教学的效率。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。如:例1中的关键句:“大雁塔的高度比小雁塔高度的.2倍少22米”,根据这句话学生的思维就会直觉的写出这样的相等关系:“大雁塔的高度=小雁塔的高度×2-22”。如果小雁塔的高度不知道就可以直接写出方程,这样问题就很快解答了;通过学习和思考,学生就会很快掌握类似这样的“一个数比另一个数的几倍多几(或少几)”的实际问题,学生就会根据自己的理解和直觉思考用“一个数=另一个数×倍数±几”这种相等关系,如果另一个数是1倍数不知道,可以用方程直接解答。因此学生如果学会抓住关键句分析与思考,能很快提高我们的课堂教学的效率,提高学生的解题能力,对学生的直觉顿悟思维有很大的促进作用。
在分析关键句的同时,我们不能仅仅局限于会解答实际问题的层面上,要通过找出关键句、用语言分析关键句,提高学生的思维能力,让学生在学习的过程中关注他们探究知识的方法和过程,理解学生的思维方法,通过交流与学习相互补充和提高。因此,在教学这部分知识的同时,我多次通过语言表达训练学生分析关键句、列出相等关系的口头表达能力。
如果把第一个条件改成“合唱组男生比女生多48人。”又如何解决呢?让学生自己讨论和交流,自己解答。学生根据刚才的学习体会,很快找到解决的方法。
通过学生的分析、交流与语言反馈表达,不仅提高了学生的表达能力,更主要的体现了学生的主体性,让学生在相互学习和交流中进行学习上的互补,同时也很好地发挥了教师的主导作用,通过学生之间的互帮互学,在交流中可以促进学生直觉顿悟思维的有效组织与思考,便于学生很好的组织自己的语言,理清自己的思维,长期训练,对学生的思维能力有很大的提高。
在学生学会找准关键句、分析关键句的基础上,通过教学我觉得还要结合学生的掌握情况,进行基础性、综合性等训练,使学生的直觉顿悟思维等有层次、有条理得到训练与提高。
在教学中我多次通过训练学生的基础表达拓展到解决实际问题的能力上来,学生学的轻松、愉快、有效。如通过基础训练:苹果是梨的2。5倍,如果梨是x 千克,那么苹果和梨一共有x千克,苹果比梨多x千克,梨比苹果少x千克……,类似这样的题目,长期用短时间训练学生的表达能力,学生对这样的实际问题解决时就能熟能生巧。不仅如此,还要通过适当的变式题目,训练学生的综合思维,适当提高学生的解题难度,促进学生的思维不断得到提高,如我在教学中把“合唱组人数是美术组人数的3倍,合唱组人数比美术组多12人。”这样基础题目通过改编成以下的题目:“合唱组人数是美术组人数的3倍,如果从合唱组调6人到美术组,则两个小组的人数同样多。”让学生比较、交流与思考,通过比较和思考发现题目的差别,找出题目中两组人数差的共同点,找到解题的共同处,对学生直觉顿悟思维有很好的帮助和提高。
教学中我多次通过训练学生的直觉思维,让学生在学习、辨析、交流与反馈表达中使学生的思维在顿悟中豁然开朗,从中感受到学习的乐趣,增强学习数学的信心,通过本单元的教学和反思,学生的解题能力和思维能力通过训练和培养得到了有效的提高,促进了教与学的共同提高。
列方程解决实际问题二教学反思篇二
一、会解形如ax±b=c、ax÷b=c、ax±bx=c的方程;
总之,一切以“解”为出发点,注重的是解决问题的结果。经过学习,我知道其实更深意义的教学应当另有所求:即以“学解”为出发点,注重的是解决问题的过程,也就是要让学生经历寻找实际问题中数量关系并列方程解答的全过程。这一单元的价值在通过学习,增强学生用方程解决实际问题的意识和能力,进一步丰富解决问题的策略,帮助学生加深理解方程是一种重要的数学思想方法。
回顾我第一课时的教学,成功之处在于较好地培养了学生的思维。首先我设置了这样一个导入题:西安小雁塔高43米,(师述:大概14、15层楼高)而大雁塔的高度是它的2倍少22米,大雁塔有多高?然后由导入题引出关键句,标准量,数量关系式三个名词概念(为将来的学习作一铺垫)。再将导入题与例1进行比较异同,在对比中明确例1为什么要用方程来解比较合宜,从而体现了用方程解作为一种顺思维它存在的价值,让学生较轻松的构建方程模型。
由于高估了学生的已有能力,解方程过程教学过于放松,没有强调书写规范,更甚者对4x=36÷4这样的错误没有预见,以致于课堂作业很不中看,不过这些问题课后用十分钟和同学们讨论,同学们都能认识到错误,顺利过关。然而,追求尽善尽美的我们还是应当引以为戒。
没给出点时间让学生探寻其他解法。其实我私自认为将这一过程放在第一课时,有点难为我的学生。我应当先给他们建一个完整的方程模型,然后再是模型之上的升华。
我准备在下一课时会补上这一环节。庆幸矣,我能及时领悟到列方程解决实际问题的教学精髓,下面的教学,该是我想方设法来实践了。
列方程解决实际问题二教学反思篇三
列方程解决简单实际问题,是在学生学习了利用等式的性质解简单方程的基础上,将实际问题抽象成方程的过程。
经过第一课时的教学后,我发现大部分学生对于列方程解决简单实际问题的过程,掌握地还不错,只有个别同学会在“解:设………为x…。”x的后面会忘记加单位名称;还有个别同学会在求出的结果x=…,得数的后面反而又加了单位名称。我想格式上问题经过老师的几次提醒,个别同学会有所改正的。
等量关系式:速度×时间=路程。由此可以列出方程:
解:设汽车从甲地到乙地需要x小时。
x×130=1820
x=1820÷13
x=14
答:汽车从甲地到乙地需要14小时。
等量关系式:底×高=平行四边形的面积,根据这个公式列出方程。
解:设平行四边形的高是x米。
5.6x=11.2
x=11.2÷5.6
x=2
答:平行四边形的高是2米。
类似于这样的找等量关系的题目,是同学错的最多的题目,我让学生分两步做:第一,找出题目中有比较意义的关键句;第二,按照关键句中,文字表述的顺序列出等量关系式。
例1:钢琴的黑键有36个,比白键少16个,白键有多少个?
第一,找出有比较意义的关键句“比白键少16个”,第二,按照关键句中文字描述的顺序,“比白键少”,“ 少”就是“减”,用“白键的个数-16个=黑键的个数”,再根据等量关系式列出方程。
解:设白键有x个。
x-16=36
x=36+16
x=52
答:白键有52个。
第一,找出找出有比较意义关键句,“正好是一头牛体重的15倍”,第二,按照关键句中文字描述的顺序,“是一头牛体重的15倍”,看到“……的几倍”,应该用乘法,“一头牛体重×15=一只大象的体重”, 再根据等量关系式列出方程。
解:设一头牛的体重是x吨。
15x=6
x=6÷15
x=0.4
答:一头牛的体重是0.4吨。
另外,还要注意的是,其实每道题目都可以列出三个等量关系式,要提醒学生注意,根据这三个等量关系式,可以列出三个方程,但是,其中有一种方程是x单独在“=”的左边或者单独在“=”的右边,这种情形要避免,因为,如果这样列方程就和算术解法差不多了,方程也就失去了它的意义。
总之,列方程解实际问题只要找出数量间的相等关系,再列式就可以了,等量关系式变化很多,因此方法较多,从不同的角度找出不同的数量关系式,可以列出不同的方程。我觉得对于理解水平较弱的学生不能仅仅满足于用方程做出了这道题就可以了,而是要让学生真正认识到用方程解题的优势,选择适合自己的一种方法就可以了,并且要养成良好的检验习惯。
列方程解决实际问题二教学反思篇四
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的标准量,根据标准量找出题目中直接的等量关系,然后列出方程,解答问题。接着通过练习和思考,学生就会很快掌握类似这样的的实际问题。因此学生学会抓住标准量来分析与思考,就能很快提高解题能力。
在分析标准量的同时,我们要通过找出标准量、用语言分析标准量,提高学生的思维能力,例如:在“妈妈的年龄是桐桐的4倍,妈妈比桐桐大24岁。妈妈和桐桐的年龄各是多少?”这一题中,我先让学生说单位“1”的量(即标准量)以及怎样设。再找出数量间的相等关系。学生在小组交流相互补充,多次通过语言表达训练,学生分析标准量、列出相等关系的口头表达能力也提高了,也掌握了探究知识的方法。
在学生学会找准标准量、分析标准量的基础上,还要结合学生的掌握情况进行基础性、综合性等训练。在教学中我多次通过训练学生的基础表达拓展到解决实际问题的能力上来,学生学的轻松、愉快、有效。如通过基础训练:苹果是香蕉的1.5倍,如果香蕉是x千克,那么苹果和香蕉一共有xx千克,苹果比香蕉多xx千克,香蕉比苹果少xx千克……,类似这样的题目,让学生弄清每一个式子所表示的意义,经过一段时间的训练,学生对这样的实际问题解决时就能熟能生巧。不仅如此,还通过适当的变式题目,训练学生的综合思维,提高学生的解题难度,促进学生的思维不断得到提高。
最后跟孩子们一起回顾列方程解决实际问题的整个过程,并总结出了六步曲:找数量关系式——解设——列方程——解方程——写答语——检验。教学中我反复训练,让学生在学习、辨析、交流与反馈表达中不断开阔思维,从中感受到学习的乐趣,增强学习数学的信心,学习效果很好,达到了预期的目的。
列方程解决实际问题二教学反思篇五
列方程解决实际问题,是新课标教材中使用比较多的一种解决逆思维的实际问题的解题方法,它改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础,易于学生运用知识的正迁移、结合思维方法正确解决此类的实际问题,学生学得轻松、灵活、有效,很好地提高了课堂教学的效率。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。如:例1中的关键句:“大雁塔的高度比小雁塔高度的2倍少22米”,根据这句话学生的思维就会直觉的写出这样的相等关系:“大雁塔的高度=小雁塔的高度×2-22”。如果小雁塔的.高度不知道就可以直接写出方程,这样问题就很快解答了;通过学习和思考,学生就会很快掌握类似这样的“一个数比另一个数的几倍多几(或少几)”的实际问题,学生就会根据自己的理解和直觉思考用“一个数=另一个数×倍数±几”这种相等关系,如果另一个数是1倍数不知道,可以用方程直接解答。因此学生如果学会抓住关键句分析与思考,能很快提高我们的课堂教学的效率,提高学生的解题能力,对学生的直觉顿悟思维有很大的促进作用。
在分析关键句的同时,我们不能仅仅局限于会解答实际问题的层面上,要通过找出关键句、用语言分析关键句,提高学生的思维能力,让学生在学习的过程中关注他们探究知识的方法和过程,理解学生的思维方法,通过交流与学习相互补充和提高。因此,在教学这部分知识的同时,我多次通过语言表达训练学生分析关键句、列出相等关系的口头表达能力。
如果把第一个条件改成“合唱组男生比女生多48人。”又如何解决呢?让学生自己讨论和交流,自己解答。学生根据刚才的学习体会,很快找到解决的方法。
通过学生的分析、交流与语言反馈表达,不仅提高了学生的表达能力,更主要的体现了学生的主体性,让学生在相互学习和交流中进行学习上的互补,同时也很好地发挥了教师的主导作用,通过学生之间的互帮互学,在交流中可以促进学生直觉顿悟思维的有效组织与思考,便于学生很好的组织自己的语言,理清自己的思维,长期训练,对学生的思维能力有很大的提高。
在学生学会找准关键句、分析关键句的基础上,通过教学我觉得还要结合学生的掌握情况,进行基础性、综合性等训练,使学生的直觉顿悟思维等有层次、有条理得到训练与提高。
在教学中我多次通过训练学生的基础表达拓展到解决实际问题的能力上来,学生学的轻松、愉快、有效。如通过基础训练:苹果是梨的2。5倍,如果梨是x 千克,那么苹果和梨一共有x千克,苹果比梨多x千克,梨比苹果少x千克……,类似这样的题目,长期用短时间训练学生的表达能力,学生对这样的实际问题解决时就能熟能生巧。不仅如此,还要通过适当的变式题目,训练学生的综合思维,适当提高学生的解题难度,促进学生的思维不断得到提高,如我在教学中把“合唱组人数是美术组人数的3倍,合唱组人数比美术组多12人。”这样基础题目通过改编成以下的题目:“合唱组人数是美术组人数的3倍,如果从合唱组调6人到美术组,则两个小组的人数同样多。”让学生比较、交流与思考,通过比较和思考发现题目的差别,找出题目中两组人数差的共同点,找到解题的共同处,对学生直觉顿悟思维有很好的帮助和提高。
教学中我多次通过训练学生的直觉思维,让学生在学习、辨析、交流与反馈表达中使学生的思维在顿悟中豁然开朗,从中感受到学习的乐趣,增强学习数学的信心,通过本单元的教学和反思,学生的解题能力和思维能力通过训练和培养得到了有效的提高,促进了教与学的共同提高。
列方程解决实际问题二教学反思篇六
本课是在学生认识了方程,学会解只含有一步计算的方程的基础上,运用等量关系列方程解决简单的实际问题。列方程解决实际问题既是解决问题的一种策略,又是十分重要的数学思想方法,对以后的数学乃至其他一些学科的学习发挥着基础作用。例题本身是一道需要逆向思考的减法实际问题,教材也比较完整的呈现了列方程解决这个实际问题的步骤,其中解方程的过程留给学生去完成。教学时引导学生列出不同的方程解决问题,让学生感受列方程方法的多样性。
1、现在学生相对的分析说明能力比较薄弱,针对这一点,我让学生多观察以及及时的分析说明,可以培养学生的观察能力、理解能力及分析能力。
2、等量关系的寻找对于列方程解决实际问题是很重要的,针对它的重要性,我相机渗透了一些简单的寻找等量关系的方法,并要求学生每一题都要说一说数量关系。既加深了学生对于学习方程时对数量关系的重视,也在间接的培养学生的解题能力。
3、列方程解决实际问题是学生第一次接触,一般的步骤是必须要遵守的,老师可以让学生模仿老师的书写格式,虽然是模仿,但也算是有接受的学习,一方面让学生自主探索,一方面也让学生有计划的记忆。在解题以及展示过程的过程中,尽量让学生多说,要让学生充分发挥主动性,真正发挥学习的主体作用。
4、强调了算术方法与方程的区分。通过例题与试一试的练习,让学生发现每道题实际上都可以找出三个数量关系,根据这三个等量关系式,可以列出三个方程,但是,其中有一种方程是x单独在“=”的左边或者单独在“=”的右边,这种情形要避免,因为,这种列方程实际上是在用算术方法解题,而不是方程的方法,这样就和算术解法差不多了,方程也就失去了它的意义。
一、重视关键句分析训练,提高学生的分析能力。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中直接的相等关系,这样可以便于学生列出方程,解答问题。接着通过练习和思考,学生就会很快掌握类似这样的的实际问题。因此学生如果学会抓住关键句来分析与思考,能很快提高解题能力。
二、重视学生的语言训练,提高学生的表达能力。
在分析关键句的同时,我们要通过找出关键句、用语言分析关键句,提高学生的思维能力,例如:在“爸爸的年龄是小红的4倍,爸爸比小红大24岁。爸爸和小红的年龄各是多少?”这一题中,先让学生说说单位“1”的量以及怎样设。再根据哪一句可以找出数量间的相等关系。我在教学中采用小组交流相互补充和提高,多次通过语言表达训练学生分析关键句、列出相等关系的口头表达能力,让学生在学习的过程中掌握探究知识的方法。
列方程解决实际问题二教学反思篇七
一赞刘老师课堂敢于放手,把主动权教给学生;
二赞小组合作交流分工明确,真实高效;
一、重视等量关系式分析训练解决实际问题首先要引导学生分析题目的条件和问题,找出题目中等量关系,然后列出方程,解答问题。接着通过练习和思考,学生就会很快掌握类似这样的的实际问题。因此学生学会抓住等量关系来分析与思考,就能很快提高解题能力。
二、重视学生的语言训练。在解决问题时刘老师采用以三人小组交流的方式分析解决问题。如:1号同学讲,2号、3号听;或是3号、1号分析题意,2号书写等,分工合作,共同完成。小组内交流人人参与,人人思考,人人表达,因此刘老师的课就是思维的课堂,知识的火花在交流中碰撞、升华。同时小组交流的一大好处就是带动后进生,带动跑神的学生,让他参与到课堂中,带动他们一起进步!与刘老师的课堂相比,我需要加强学生的语言表达能力,就像刘老师所说,刚开始不能急,要慢节奏,教给孩子怎样说,怎样小组交流,正如磨刀不误砍柴工,练上一个月,一个学期,你就会有不一样的收获。
三、重视学生解决问题思路训练回顾列方程解决实际问题的整个过程,刘老师让学生总结出了七步:读(读清题意)--找(找数量关系式)——解设(未知数x)——列(列方程)——解(解方程)——检(口答检验)--答(写答案)。方法的引领比获得的知识更重要,告诉学生以后碰到类似的问题如何解决。教学中刘老师一节课教学内容我用了两节课时间训练让学生在学习、辨析、交流与反馈表达中不断开阔思维,从中感受到小组学习的乐趣,增强学习数学的信心,学习效果很好,初步达到了预期的目的。课堂属于学生,课堂的精彩不在于老师多么优秀,在于学生的出彩,在以后的教学中,我要慢慢践行放手小组合作交流学习,给学生更多的思考时间,更大的展示空间,让我的数学课堂更有魅力。