在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
圆柱表面积的教学设计篇一
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
:
圆柱形物体、学具、多媒体课件
:
圆柱侧面积的计算方法推导。
:
课前布置学生用纸片试做一个圆柱体。
一、交流做圆柱体的情况。
师:昨天老师布置你们做一个圆柱体,做起来了吗?谁来介绍一下你是怎样做的。
生1:我是先找一个圆柱体的茶叶罐,贴着底面剪了2个圆,然后再紧贴着侧面剪下了一个长方形,最后用透明胶粘起来。
生2:我也先剪出两个一样大的圆,然后剪出一个长方形,开始怎么也做不出来,不是圆太大了就是太小了,后来不断修整,总算做起来。
生3:我发现两个圆要一样大,长方形纸片的长与圆周长相等时很快就做起来。
师:这说明什么呢?
一生抢着说:“原来底面圆的周长等于长方形的长”。
二、探索圆柱表面积的计算方法。
(1)引入
师:这节课我们要研究怎样计算圆柱的表面积。下面我们先来回顾一下圆的面积计算公式是怎样推导出来的?
生:把圆切割拼成一个近似的长方形。(师用电脑演示过程)
师:圆面积公式的推导方法,对圆柱的表面积公式推导有没有启示呢?你们打算怎么做?
生:把圆柱剪开,变成我们学过的图形。
师:下面分小组探索圆柱的表面积的计算方法。
(2)小组汇报
生1:我们小组把做的圆柱体展开后,发现圆柱体由2个相同的底面,和一个侧面组成。侧面展开是长方形,侧面积=底面周长×高。2个底面面积=兀r2×2。所以,圆柱表面积=底面周长×高+兀r2×2
生2:我们小组同意他们的方法,我们还能用一个字母公式来表示:s圆柱=2兀r×h+兀r2×2 。
师:还有不同方法吗?
生3:我的方法是,s圆柱=2兀r×(h+r)不知道行不行。我是从第2个同学公式中,运用乘法分配律转化过来的。
师:这样做的结果是一样的,有什么道理呢?
(生陷入思考)
师:从公式看2个底面圆跑到哪去了呢?
一个学生恍然大悟,激动地说我知道,转化成长方形了。大多数学生还没领悟过来,他马上到黑板画草图,在老师协助下完成。一画完教室里就响起了热烈的掌声。
师:太不简单了,这种方法可以说是数学上的一项伟大发现。连书本上都没有,我要向更多的同学和老师介绍。
师:现在我们有两种方法来计算圆柱的表面积,那么计算一个圆柱的表面积至少要知道什么条件呢?
生1:半径或直径和高。
生2:有周长和高也行。
生3:我发现已知周长和高,用第二种方法计算比较快。
师:在我们实际生活中有很多特殊情况,同学们要根据具体情况,灵活处理。
三、自学例3
师:注意思考:
(1)这个圆柱形水桶,有什么不一样,计算时要注意什么?
(2)什么叫“进一法”?什么情况下要运用进一法?
生1:这个水桶只有一个底面,不能多算成2个。
生2:“进一法”书上告诉我们,就是计算结果在求近似数时,没满4也要向前一位进一,就像昨天我们做圆柱体时,要留点“接头”用胶水粘,接头不能舍去。
师:在一些用料问题上,我们要根据实际情况来考虑。
四、 计算练习(出了3道题)
由于计算繁杂时间略显不足,正确率不高,不能全面反馈学生的掌握情况。
这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。
一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。
二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由2个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。
三、我也体验到了怎么教数学。
(1)只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。
(2)立足发展学生的能力,设计课堂教学的策略。
(3)树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。
四、不足改进。
在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。
圆柱表面积的教学设计篇二
1、让学生经历操作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。
2、让学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步发展学生的空间观念。
3、让学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。
理解圆柱侧面积、表面积的意义,正确计算圆柱侧面积和表面积。
圆柱侧面积计算公式的推导过程。
茶叶盒,剪刀,计算器。
一、创设情境,导入新课
师:在前面的学习中,我们认识了圆柱,并且知道生活中有很多物体的形状是圆柱。大家看,这些圆柱形状的物体。(课件出示)这些圆柱的制作都需要一定的材料。(课件出示一个茶叶盒)请同学们想一想,要求“制作一个茶叶盒需要多少材料”,实际上求的是圆柱的什么?(让学生边演示边说)
二、动手操作,探究新知
1、介绍圆柱的侧面积、底面积和表面积。
师:要求“制作一个茶叶盒需要多少材料”,实际上是求圆柱的侧面面积和2个底面面积。(边指边说)我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。(让学生互相说一说“什么是圆柱的表面积”。)
2、创疑激趣。
师:我们知道,圆柱的底面是圆,我们已经会求圆的面积,可是圆柱的侧面是一个曲面,我们又该怎样求它的面积呢?
3、小组合作探究。
师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形求出它的面积呢?(小组合作探究,出示要求,结合圆柱的特征,用剪一剪、比一比等方法进行研究。)
4、小组汇报。
5、教师小结,课件演示。
师:刚才同学们把圆柱的侧面沿高剪开,展开后是一个长方形,利用长方形面积公式推导出了圆柱的侧面积的计算方法,下面我们便结合电脑演示,进一步加深理解。
6、学习计算圆柱表面积。
师:我们已经会求圆柱的侧面积,你现在会求圆柱的表面积了吗?(让学生回答,并口头列式,教师板书求表面积的算式,并板书课题“圆柱的表面积”。)
三、运用知识,解决问题
师:下面我们便利用学过的知识解决一些问题。
1、只列式不计算。订正时,让学生说想法。
2、完整解答下面各题。
让学生独立审题。问:要求“制作笔筒需要多少材料”,实际是求圆柱的什么?(让学生列综合算式,集体订正。)
四、知识拓展
将一个底面直径是8分米,高是10分米的圆柱沿底面直径垂直切开,它的表面积增加( )平方分米。
师:增加了几个面?是怎样的两个面?
(课件演示)
五、全课总结
师:通过本节课的学习,你有什么收获?
圆柱表面积的教学设计篇三
通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
使学生认识圆柱侧面展开图的多样性。
教师活动
一、创设情境,引起兴趣。
拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?
二、自主探究,发现问题。
研究圆柱侧面积
1、独立操作:
2、观察对比:观察展开的图形各部分与圆柱体有什么关系?
3、小组交流:能用已有的知识计算它的面积吗?
4、小组汇报。重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?
长方形的面积=圆柱的侧面积即长×宽=底面周长×高,所以,
圆柱的侧面积=底面周长×高s侧==c×h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:s侧=2∏r×h
如果圆柱展开是平行四边形,是否也适用呢?
(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
研究圆柱表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。2、圆柱体的表面积怎样求呢?3、动画:圆柱体表面展开过程
三、实际应用
1、解决书上的例题
2、填空:圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()
3、要求一个圆柱的表面积,一般需要知道哪些条件()
4、教材第六页试一试。
学生活动
说说自己的猜想。
利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。
选出一个学生已经展开的图形贴到黑板上。
长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高。
学生动手操作,动笔验证,得出了同样适用的结论。
学生测量,计算表面积。
得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2
指名板演,互相纠正。
学生互相讨论后完成。
课后完成。
圆柱的表面积
学生能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。