当前位置:网站首页 >> 作文 >> 最新一年级上册数学知识点(十七篇)

最新一年级上册数学知识点(十七篇)

格式:DOC 上传日期:2023-03-26 10:04:17
最新一年级上册数学知识点(十七篇)
时间:2023-03-26 10:04:17     小编:zdfb

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。

一年级上册数学知识点篇一

以前学过的0以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义

1.2有理数

1.2.1有理数

正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2数轴

规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数

只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4绝对值

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3有理数的加减法

1.3.1有理数的加法

有理数的加法法则:

⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a

三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)

1.3.2有理数的减法

有理数的减法可以转化为加法来进行。

有理数减法法则:

减去一个数,等于加这个数的相反数。

a-b=a+(-b)

1.4有理数的乘除法

1.4.1有理数的乘法

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

两个数相乘,交换因数的位置,积相等。

ab=ba

三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

(ab)c=a(bc)

一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

a(b+c)=ab+ac

数字与字母相乘的书写规范:

⑴数字与字母相乘,乘号要省略,或用“”

⑵数字与字母相乘,当系数是1或-1时,1要省略不写。

⑶带分数与字母相乘,带分数应当化成假分数。

用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。

一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即

ax+bx=(a+b)x

上式中x是字母因数,a与b分别是ax与bx这两项的系数。

去括号法则:

括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。

括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。

括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。

1.4.2有理数的除法

有理数除法法则:

除以一个不等于0的数,等于乘这个数的倒数。

a÷b=a·(b≠0)

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

1.5有理数的乘方

1.5.1乘方

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何正整数次幂都是0。

有理数混合运算的运算顺序:

⑴先乘方,再乘除,最后加减;

⑵同极运算,从左到右进行;

⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行

1.5.2科学记数法

把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

用科学记数法表示一个n位整数,其中10的指数是n-1。

1.5.3近似数和有效数字

接近实际数目,但与实际数目还有差别的数叫做近似数。

精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。

对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

2.1从算式到方程

2.1.1一元一次方程

含有未知数的等式叫做方程。

只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。

分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

2.1.2等式的性质

等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等。

等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2从古老的代数书说起——一元一次方程的讨论⑴

把等式一边的某项变号后移到另一边,叫做移项。

2.3从“买布问题”说起——一元一次方程的讨论⑵

方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。

解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。

去分母:

⑴具体做法:方程两边都乘各分母的最小公倍数

⑵依据:等式性质2

⑶注意事项:①分子打上括号

②不含分母的项也要乘

2.4再探实际问题与一元一次方程

3.1多姿多彩的图形

现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。

3.1.1立体图形与平面图形

长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

长方形、正方形、三角形、圆等都是平面图形。

许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

3.1.2点、线、面、体

几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。

包围着体的是面。面有平的面和曲的面两种。

面和面相交的地方形成线。

线和线相交的地方是点。

几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

3.2直线、射线、线段

经过两点有一条直线,并且只有一条直线。

两点确定一条直线。

点c线段ab分成相等的两条线段am与mb,点m叫做线段ab的中点。类似的还有线段的三等分点、四等分点等。

直线桑一点和它一旁的部分叫做射线。

两点的所有连线中,线段最短。简单说成:两点之间,线段最短。

3.3角的度量

角也是一种基本的几何图形。

度、分、秒是常用的角的度量单位。

把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。

3.4角的比较与运算

3.4.1角的比较

从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。

3.4.2余角和补角

如果两个角的和等于90(直角),就说这两个角互为余角。

如果两个角的和等于180(平角),就说这两个角互为补角。

等角的补角相等。

等角的余角相等。

收集、整理、描述和分析数据是数据处理的基本过程。

4.1喜爱哪种动物的同学最多——全面调查举例

用划记法记录数据,“正”字的每一划(笔画)代表一个数据。

考察全体对象的调查属于全面调查。

4.2调查中小学生的视力情况——抽样调查举例

抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查。

统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式。调查时,可用不同的方法获得数据。除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法。

利用表格整理数据,可以帮助我们找到数据的分布规律。利用统计图表示经过整理的数据,能更直观地反映数据规律。

4.3课题学习调查“你怎样处理废电池?”

调查活动主要包括以下五项步骤:

一、设计调查问卷

⑴设计调查问卷的步骤

①确定调查目的;

②选择调查对象;

③设计调查问题

⑵设计调查问卷时要注意:

①提问不能涉及提问者的个人观点;

②不要提问人们不愿意回答的问题;

③提供的选择答案要尽可能全面;

④问题应简明;

⑤问卷应简短。

二、实施调查

将调查问卷复制足够的份数,发给被调查对象。

实施调查时要注意:

⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;

⑵告诉被调查者你收集数据的目的。

三、处理数据

根据收回的调查问卷,整理、描述和分析收集到的数据。

四、交流

根据调查结果,讨论你们小组有哪些发现和建议?

五、写一份简单的调查报告

一年级上册数学知识点篇二

本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。在此基础上,认识一些简单的平面图形——直线、射线、线段和角。

1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。

2.经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力。

3.积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。

从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点;

正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系是重点;

画一条线段等于已知线段,比较两条线段的长短是一个重点,在现实情境中,了解线段的性质“两点之间,线段最短”是另一个重点。

立体图形与平面图形之间的转化是难点;

探索点、线、面、体运动变化后形成的图形是难点;

画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点。

1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形。有些几何图形的各部分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。

2.几何图形的分类:几何图形一般分为立体图形和平面图形。

3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。常用直线与x轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于x轴)的倾斜程度。

4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线。

5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。

线段有如下性质:两点之间线段最短。

6.两点间的距离:连接两点间线段的长度叫做这两点间的距离。

7.端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。

线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段ab或线段ba,线段a。其中ab表示直线上的任意两点。

8.直线、射线、线段区别:直线没有距离。射线也没有距离。因为直线没有端点,射线只有一个端点,可以无限延长。

9.角:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边。

10.角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

11.角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

12.角的符号:角的符号:∠

13.角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

锐角:大于0°,小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:等于180°的角叫做平角。

优角:大于180°小于360°叫优角。

劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

周角:等于360°的角叫做周角。

负角:按照顺时针方向旋转而成的角叫做负角。

正角:逆时针旋转的角为正角。

0角:等于零度的角。

余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!

14.几何图形分类

(1)立体几何图形可以分为以下几类:

第一类:柱体;

包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、n棱柱;

棱柱体积统一等于底面面积乘以高,即v=sh,

第二类:锥体;

包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及n棱锥;

棱锥体积统一为v=sh/3,

第三类:球体;

此分类只包含球一种几何体,

体积公式v=4πr3/3,

其他不常用分类:圆台、棱台、球冠等很少接触到。

大多几何体都由这些几何体组成。

(2)平面几何图形如何分类

a.圆形

b.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,体形,平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六……

注:正方形既是矩形也是菱形

一年级上册数学知识点篇三

把两个数合并在一起用加法。

加数+加数=和如:3+13=16中,3和13是加数,和是16。

从一个数里面去掉一部分求剩下的是多少用减法。

被减数-减数=差如:19-6=13中,19是被减数,6是减数,差是13。

要点:

(一)熟记表内加法和减法的得数

(二)整理与复习10以内的加减法

(三)知道以下规律

一年级上册数学知识点篇四

1、数一数

数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。

2、比多少

同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。

比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。

比较两种物体的多或少时,可以用一一对应的方法。

1、认识上、下

体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。

2、认识前、后

体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。

同一物体,相对于不同的参照物,前后位置关系也会发生变化。

从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。

3、认识左、右

以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。

要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。

主动预习

预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

让数学课学与练结合

在数学课上,光听是没用的。自己也要在草稿纸上练。当遇到不懂的难题时,一定要提出来,不能不懂装懂,否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。

1、数字写在字母的前面,应省略乘。[5a]、[16xy]等。

2、π是常数,因此也可以作为系数。它不是未知数。

3、若系数是带分数,要化成假分数。

4、当一个单项式的系数是1或—1时,“1”通常省略不写,如[(—1)ab]写成[—ab]等。

5、在单项式中字母不可以做分母,分子可以。

6、单独的数“0”的系数是零,次数也是零。

7、常数的系数是它本身,次数为零。

8、如果是分数的多项式,那么他的系数就是他的分数常数,次数为最高次幂。

一年级上册数学知识点篇五

1.1 正数与负数

正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)

负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。

0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。

1.2 有理数

1、有理数:整数和分数统称有理数。

2、数轴 :通常用一条直线上的点表示数,这条直线叫数轴;所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

4、绝对值:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

1.3 有理数的加减法

有理数加法法则:

1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数

4、加法交换律:a+b=b+a

5、加法结合律:a+b+c=a+(b+c)=(a+c)+b

有理数减法法则:

减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法

1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;

乘法交换律:a*b=b*a

结合律:a*b*c=a*(b*c)

分配律:a(b+c)=ab+ac

2、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;

两数相除,同号得正,异号得负,并把绝对值相除;

0除以任何一个不等于0的数,都得0。

1.5 有理数的乘方

1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a<10。

2.1 整式

1、单项式:由数字和字母乘积组成的式子。判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。

2、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。

3、单项式和多项式统称为整式。

2.2整式的加减

1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

2、同类项必须同时满足两个条件:

(1)所含字母相同;

(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关

3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

6、整式加减的一般步骤:

一去、二找、三合

(1)如果遇到括号按去括号法则先去括号.

(2)结合同类项.

(3)合并同类项

3.1 一元一次方程

1、方程是含有未知数的等式。

2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。

3、等式的性质:

1)等式两边同时加(或减)同一个数(或式子),结果仍相等;

2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。

3.2 、3.3解一元一次方程

在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用。

①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;

②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;

③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号) 移项要变号;

④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式;

⑤系数化为1:字母及其指数不变系数化成1,在方程两边都除以未知数的系数a,得到方程的解。不要分子、分母搞颠倒。

3.4 实际问题与一元一次方程

1、一元一次方程解决实际问题的一般步骤

①审题,特别注意关键的字和词的意义,弄清相关数量关系;

②设出未知数(注意单位);

③根据相等关系列出方程;

④解这个方程;

⑤检验并写出答案(括单位名称)。

⑵一些固定模型中的等量关系及典型例题参照一元一次方程应用题专练学案。

2、 列方程解应用题的检验包括两个方面:

⑴检验求得的结果是不是方程的解;

⑵是要判断方程的解是否符合题目中的实际意义.

3、应用(常见等量关系)

行程问题:s=v×t

工程问题:工作总量=工作效率×时间

盈亏问题:利润=售价-成本

利率=利润÷成本×100%

售价=标价×折扣数×10%

储蓄利润问题:利息=本金×利率×时间

本息和=本金+利息

一年级上册数学知识点篇六

加数+加数=和

如:3+13=16中,3和13是加数,和是16。从一个数里面去掉一部分求剩下的是多少用减法。

被减数-减数=差

如:19-6=13中,19是被减数,6是减数,差是13。

(一)熟记表内加法和减法的得数

(二)知道以下规律

1、加法

(1)两个数相加,保持得数不变:如果相加的这两个数有一个增大了,则另一个数就要减小,且一个数增大了多少,另一个数就要减少多少。

(2)两个数相加,其中的一个数不变,如果另一个数变化则得数也会发生变化,且加数变化了多少,结果就变化多少。

(3)两个数相加,交换它们的位置,得数不变。

2、减法

(1)一个数减去另一个数,保持减数不变:如果被减数增大,结果也增大且被减数增大多少,结果就增大多少;被减数减小,则结果也减小,且被减数减小多少,结果也减小多少。

(2)一个数减另一个数,保持被减数不变:如果减数增大,结果就减小,且减数增大了多少,结果就减小多少;如果减数减小,则结果增大,且减数减小了多少,结果就增大多少。

(3)一个数减另一个数,保持的数不变:被减数增大多少,减数就要增大多少;被减数减小多少,减数也要减小多少。

一年级上册数学知识点篇七

1、人民币的单位有:元、角、分,相邻单位的进率是10,即1元=10角,1角=10分。

2、人民币按制作材料分为纸币和硬币两种,按单位分为元币、角币和分币三种。其中元币共有七种,分别是1元、2元、5元、10元、20元、50元和100元;角币共有三种,分别是1角、2角和5角;分币也有三种,分别是1分、2分和5分。

3、人民币的换算:

(1)2元8角=(28)角

2元10角=(30)角

(2)2元8角=(2.80)元

2元10角=(3)元

(3)2.15元=(2)元(1)角(5)分

12.00元=(12)元

(4)0.70元=(7)角

0.05元=(5)分

4、换钱

(1)换成一种:1张10元可以换(5)张2元

(2)换两种以上:1张10元可以换(4)张2元和(2)张1元

5、解决问题类型:

毛巾8元5角,香皂4元8角,牙膏5元,牙刷2元6角

(1)牙膏和牙刷一共多少钱?

5元+2元6角=7元6角

答:牙膏和牙刷一共要7元6角。

(2)牙膏比牙刷贵多少钱?

5元-2元6角=2元4角

答:牙膏比牙刷贵2元4角。

(3)香皂比毛巾便宜多少钱?

8元5角-4元8角=3元7角

答:香皂比毛巾便宜3元7角。

(4)用10元钱买毛巾和牙刷,够吗?

8元5角+2元6角=11元1角

10元

一年级上册数学知识点篇八

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体

(1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形

圆柱、柱

生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分)锥圆锥、棱锥

4、棱柱及其有关概念:

棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:11种

6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图

物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n—2)个三角形。

弧:圆上a、b两点之间的部分叫做弧。

扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

1、有理数的分类

正有理数

有理数零

负有理数

或整数

有理数

分数

2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零

3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。解题时要真正掌握数形结合的思想,并能灵活运用。

4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。

5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=—a,则a≤0。

6、有理数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

7、有理数的运算:

(1)五种运算:加、减、乘、除、乘方

(2)有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

(3)运算律

加法交换律

加法结合律

乘法交换律

乘法结合律

乘法对加法的分配律

1、代数式

用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

2、同类项

所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。

3、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。

4、去括号法则

(1)括号前是“+”,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。

(2)括号前是“﹣”,把括号和它前面的“﹣”号去掉后,原括号里各项的符号都要改变。

5、整式的运算:

整式的加减法:

(1)去括号;

(2)合并同类项。

1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。线段有两个端点。

2、射线:将线段向一个方向无限延长就形成了射线。射线有一个端点。

3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点。

4、点、直线、射线和线段的表示

在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示。

一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示。

一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面)。

一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示。

5、点和直线的位置关系有两种:

①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

6、直线的性质

(1)直线公理:经过两个点有且只有一条直线。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

(4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

7、线段的性质

(1)线段公理:两点之间的所有连线中,线段最短。

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

8、线段的中点:点m把线段ab分成相等的两条相等的线段am与bm,点m叫做线段ab的中点。

9、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

11、角的表示

角的表示方法有以下四种:

①用数字表示单独的'角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠b,∠c等。

④用三个大写英文字母表示任一个角,如∠bad,∠bae,∠cae等。

注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

12、角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

1°=60’,1’=60”

13、角的性质

(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

(2)角的大小可以度量,可以比较

(3)角可以参与运算。

14、角的平分线

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

15、平行线:

在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥”表示,如“ab∥cd”,读作“ab平行于cd”。

注意:

(1)平行线是无限延伸的,无论怎样延伸也不相交。

(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

16、平行线公理及其推论

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

补充平行线的判定方法:

(1)平行于同一条直线的两直线平行。

(2)在同一平面内,垂直于同一条直线的两直线平行。

(3)平行线的定义。

17、垂直:

两条直线相交成直角,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

直线ab,cd互相垂直,记作“ab⊥cd”(或“cd⊥ab”),读作“ab垂直于cd”(或“cd垂直于ab”)。

18、垂线的性质:

性质1:平面内,过一点有且只有一条直线与已知直线垂直。

性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。

19、点到直线的距离:过a点作l的垂线,垂足为b点,线段ab的长度叫做点a到直线l的距离。

20、同一平面内,两条直线的位置关系:相交或平行。

一年级上册数学知识点篇九

读20以内的数顺数:从小到大的顺序01234567891011121314151617181920

倒数:从大到小的顺序20191817······

单数:1、3、5、7、9······

双数:2、4、6、8、10······

(注:0既不是单数,也不是双数,0是偶数。在生活中说单双数,在数学中说奇偶数。)

两位数(1)我们生活中经常遇到十个物体为一个整体的情况,实际上十个“1”就是一个“10”,一个“10”就是十个“1”。

如:a:11里有(1)个十和(1)个一;

11里有(11)个一。

12里

12里有(12)个一13里有(1)个十和(3)个一;

13里有(13)个一14里有(1)个十和(4)个一;

14里有(14)个一15里有(1)个十和(5)个一;

15里有(15)个一······

19里有(1)个十和(9)个一;

或者说,19里有(19)个一20里有(2)个十;

20里有(20)个一b:看数字卡片(11~20),说出卡片上的数是由几个十和几个一组成的。

(2)在计数器上,从右边起第一位是什么位?(个位)第2位是什么位?(十位)个位上的1颗珠子表示什么?(表示1个一)十位上的1颗珠子表示什么?(表示1个十)

(3)先读11、12、13、14、15、16、17、18、19、20,再写出来。

如:14,读作:十四,写作:14。个位上是4,表示4个一,十位上数字是1,表示1个十。

给数字娃娃排队

5、6、10、3、20、17,可以按从大到小的顺序排列,也可以按从小到大的顺序排列。

(注意做题时,写一个数字,划去一个,做到不重不漏。)

任意取20以内的两个数,能够用谁比谁大或谁比谁小说一句话。

如:16比15大,写出来就是16>159比13小,写出来就是9<13

“比”字的用法

看“比”字的后面是谁,比几大1就要在几的基础上加1,比几小1就要在几的基础上减1。

如:比5小2的数是(3),比4多3的数是(7)。

△▲▲★△☆☆△△△▲★★★☆★

观察图,说说有几个图形?(16个图形)从左数第几位是什么?从右数第几位是什么?把左边三个圈起来;把右边第2个圈起来。

(复习此类知识时,分清左右,同时确定方向;知道几个和第几个的区别。)

2的前面是1,2的后面是3,2再添上1就是3,3再去掉1就是2,与2相邻的数是1和3。

3的前面是2,3的后面是4,3再添上1就是4,4再去掉1就是3,与3相邻的数是2和4。······

20的前面是19,20的后面是21,······,与20相邻的数是19和21。

两个事物的对比

比较两个事物的大小、多少、长短、高矮、轻重等,要以其中的一个事物作为参照,或者说以其中的一个事物作为标准,然后再比较,这样就能说另一个事物比作为标准的那个事物大或者小、多或少等。

比长短:常用的方法注意要一端对齐,也可以采用数格比较,或对称比较。

比高矮:注意在同一平面上去比较。

比多少:运用一一对应原则。

三个事物比较

可以先两个两个的比较。然后根据比较的结果,得出三个事物比较的结论。

如:a比b重,b比c重,那么可以得到a比c重。a最重,c最轻。

a比b重,a比c重,只能得到a最重,还要比较b和c,才知道谁最轻。

一年级上册数学知识点篇十

把两个数合并在一起用加法。

加数+加数=和如:3+13=16中,3和13是加数,和是16。

从一个数里面去掉一部分求剩下的是多少用减法。

被减数-减数=差如:19-6=13中,19是被减数,6是减数,差是13。

要点:

(一)熟记表内加法和减法的得数

(二)整理与复习10以内的加减法

(三)知道以下规律

一年级上册数学知识点篇十一

本册教材的教学内容领域分类数与代数知识与技能解决问题知识空间与图形与技能解决问题知识与技能解决问题实践与综合应用内容认识20以内的数;20以内的加法和相应的减法(包括连加、连减);认识物体的轻重、长短、大小、多少和高矮;认识钟面及钟面上的整时、半时。联系加法和减法的含义;解决求和、求剩余数的实际问题;认识上下、前后、左右;直观认识长方体、正方体、圆柱和球。简单几何体的分类;确定和描述物体所在的相对位置。数据的收集、整理、分析和描述;象形统计图;简单统计表。使用适当的方法收集、整理数据,能用图表表示整理结果;对统计结果进行简单的说明。大家来锻炼(综合应用学过的知识解决实际问题);迎新年(综合应用本册有关知识解决实际问题)。统计各单元的教学内容一生活中的数

各课知识点:

可爱的校园(数数)

知识点:

1、按一定顺序手口一致地数出每种物体的个数。

2、能用1-10各数正确地表述物体的数量。快乐的家园(10以内数的认识)知识点:

1、能形象理解数“1”既可以表示单个物体,也可以表示一个集合。

2、在数数过程中认识1-10数的符号表示方法。

3、理解1~10各数除了表示几个,还可以表示第几个,从而认识基数与序数的联系与区别:基数表示数量的多少,序数表示数量的顺序。

玩具(1~5的认识与书写)知识点:

1、能正确数出5以内物体的个数。

2、会正确书写1-5的数字。

小猫钓鱼(0的认识)知识点:

1、认识“0”的产生,理解“0”的含义,0即可以表示一个物体也没有,也可以表示起点和分界点。

2、学会读、写“0”。

文具(6~10的认识与书写)知识点:

1、能正确数出数量是6-10的物体的个数。

2、会读写610的数字。二比较

各课知识点:

动物乐园(比大小与比多少)知识点:

1、比较动物谁多谁少有两种策略:一是基于“数数”,二是进行“配对”,从而体验“一一对应”的数学思想。

2、通过比较具体数量多少的数学活动,获得对“>”、“<”、“=”等符号意义的理解,学会写法,并会用这些符号表示10以内的数的大小。

3、体验“同样多”、“多”、“少”、“最多”、“最少”的含义。高矮(比高矮、比长短)

知识点:

1、长短、高矮、厚薄都属于物体长度的比较的问题,只是在实际生活中,人们习惯把水平放的物体的长度比较叫比长短,把垂直摆放的物体达到长度的比较叫比高矮。把扁平的物体上下距离的比较叫比厚薄。它们的比较方法是相通的。

2、认识高矮的区别,知道比较高矮、长短、厚薄时要在起点相同的情况下才能正确比较。3、知道高矮比较的相对性轻重(比轻重)知识点:

1、经历比较轻重的过程,体验一些具体的比较方法及轻重的相对性。

2.初步体会借助工具确定轻重的必要性和解决问题方法的多样性。

3.间接比较轻重,渗透了等量对换的思想,对学生说具有一定的难度,不要求所有的学生都能独立完成。

一年级上册数学知识点篇十二

知识点:

1、初步了解加法的含义,会读、写加法算式,感悟把两个数合并在一起求一共是多少,用加法计算;

2、初步尝试选择恰当的方法进行5以内的加法口算。

3、第一次出现了图形应用题,要让学生学会看图形应用型题目,理解题目的意思。有几辆车(初步认识加法的交换律)知识点:

1、初步感知从不同的观察角度出发,会列出不同的算式,从而形象直观的说明两个数相加,交换加数位置,得数不变。

2、鼓励学生根据图意提出问题。解决问题时,可以出现两个不同的算式,并比较两个算式的异同。

摘果子(减法的认识)

知识点:

1、会读写减法算式,能说出减号的意义,理解减法的计算方法。

2、能正确理解图意,并根据图意写出减法算式,从而学会解决简单的数学问题,感悟从一个数里去掉一部分求另一部分用减法计算。

小猫吃鱼(得数是0的减法)知识点:

1、进一步体会减法含义,理解得数是“0”的减法算式的意义。

2、提高5以内数减法的计算能力。3、会把加法算式转化减法算式。猜数游戏(6,7的加减法)知识点:

1、学会“6”和“7”的加减法,感知并了解加减法之间的相互联系。

2、根据图意能列出“一加一减”两道算式。

3、正确口算“6”和“7”的加减法,并能表达算式的含义。跳绳(8,9的加减法)知识点:

1、在具体情境中有序地写出8、9的不同的加减法算式。体会加减法之间的联系。

2、正确口算“8”和“9”的加减法。

可爱的企鹅(8,9加减法的综合练习)知识点:

1、在理解图意的基础上分析数量关系并提出数学问题,正确选择计算方法解决问题。

2、认识“大括号”,理解图中“大括号”和“问号”表示的含义。

3、根据图中数量关系,联系加减法含义,能正确列式,学会“求整体”时用加法解决,“求部分”时用减法解决。

分苹果(10的加减法)知识点:

1、从实际问题抽象并整理出10的加法和相应的减法。

2、正确熟练地口算10的加减法

3、本课教学10的组成和分解虽然不再作为10的加减法的逻辑起点,但它仍是熟练地口算10的加减法的有效手段。操场上(解决减法问题)知识点:

1、在具体情境中使学生初步学会用减法算式解决"谁比谁多(少)几"的问题。

2、用自己的语言完整的表达两者之间多几、少几的关系

3、在具体的问题情境中引导学生体验谁比谁少,谁比谁多的相对性,意思是一样的,可以用同一道算式来解决。

乘车(连加、连减与加减混合运算)知识点:

1、知道连加、连减、加减混合算式的含义和“从左到右”的运算顺序。

2、掌握连加、连减、加减混合式题运算的计算方法,能正确计算。大家来锻炼

知识点:

1、能正确数出数量是10以内物体的个数。

2、巩固基数和序数的区别,能给事物正确排序。

3、正确理解图意,能提出数学问题,并选择相应的方法解决问题。

4、根据情境提供的数学信息,学生可以正确比较“多、少”“高、矮”,体会比较的相对性。四分类

各课知识点:

整理房间(分类的含义和方法)

知识点:

1、使学生经历分类的过程,学会按一定标准或自定标准进行分类。

2、让学生懂得把物体按一定的标准放在一起就叫分类。

3、初步养成有条理地整理事物的习惯;在分类的活动中,培养学生观察力、判断力,动手操作能力。

整理书包(用不同标准进行分类)知识点:

1、让学生经历整理分类的过程,体验整理分类的必要性。

2、让学生自主选择某种标准对事物进行比较、分类活动,体验分类结果在不同标准下的多样性。让学生懂得根据不同的分类标准可以有不同的分类结果。五位置与顺序各课知识点:

前后(前后的位置关系)知识点:

1、注意用前、后等词语描述物体的顺序与描述物体的准确位置两者之间的区别。

2、鹿在最前面,谁在它的后面?这个答案不唯一,不仅仅有一个松鼠,还有兔子、乌龟和蜗牛都在鹿的后面。

3、注意让学生会用前、后等词语描述物体的相对位置。上下(上下的位置关系)知识点:

1、在具体的情境中理解“上下”的相对性。

2、能用语言表达实际情境中物体的“上下”位置关系。

左右(左右的位置关系)知识点:

1、能用语言描述物体的左右位置关系。

2、能在情境中体会左右位置的相对性。进一步再体会:两人如果面向同一方向,他们所看到的左右位置与顺序是一致的;如果面对着面,他们看到的左右位置与顺序是相反的。教室(前后、上下、左右综合应用)

知识点:

综合运用前面三课所学的知识,进行物品的位置与顺序的描述活动

六认识物体

(一)各课知识点:

物体分类(立体图形的认识)知识点:

1、对几何体有一定的感性认识,直观辨别物体的四种形状及其名称。

2、能对简单的几何图形进行分类。在具体的分类活动中,知道可以选择很多不同的标准对物体进行分类,教材只呈现按大小和形状的标准分,是因为它们都是几何研究的对象。

你说我摆(几何体认识的练习)

知识点:

这个数学活动,对“说”的和“摆”的都有一定要求:说的一方要清晰、有条理地描述眼前几何体的相对位置与顺序;摆的一方则要根据听到的信息,一边在头脑中建构空间图形的表象,一边用相应几何体模型把它摆出来。双方还要就摆的与说的是否一致进行确定。

七加减法(二)(一)各课知识点:

捆小棒(11~20各数的认识)知识点:

1、计数器表示数的方法是摆小棒表示数的方法的简化和抽象:

计数器上的数的“十位”与“捆”对应,“个位”与“根”对应。这次抽象形成了极为重要的位值概念。

2、认识一个新的计数单位“十”,知道“从右边起,第一位是个位,第二位是十位。”

3、在摆一摆、数一数、捆一捆活动中,认学生认、读、写11~20各数。掌握20以内数的顺序、大小以及数的组合。

搭积木(十几加(减)几的加减法)知识点:

1、用形象的积木,帮助学生认识不进位加法和不退位减法。(即在原有的基础上增加为加法,减少为减法。)

2、学习20以内不进位加法和不退位减法,计算方法都是先在个位上加或减,然后再与十位上相加或相减。

3、在计算中找规律,理解加法中加号两边的数交换位置,相加结果不变。减法中,被减数不变,减数越大,所得的差越小。

有几瓶牛奶(9加几的进位加法)知识点:

1、通过问题的解决,让学生学会“9+?”的进位加法。

2、理解凑十法的简便性。(把与9相加的另一加数分解成1和几,使9和1凑成10,再用10加上剩余的数,就是“9+?”的凑十法。

3、直接对进位加法的算式进行计算,以作为巩固练习。有几棵树(8加几的进位加法)知识点:

1、引导学生利用已有的“9+?”的经验探索“8+?”的计算方法。第一种方法:把8凑10,分解另一个加数。第二种方法:把8分解,将另一个加数凑成10。

2、进一步理解“凑十法”。

正确熟练地口算8加几。

买铅笔(十几减几的退位减法(一))知识点:

1、学会“十几减九”的退位减法。

2、让学生探索并学会“十几减八”的退位减法及相关数学问题。

3、体会计算方法的多样性。

第一种方法:个位上的数不够减9或8,从十位退一在个位加十再减。

第二种方法:将十几分解10和几,用10减9或8,再用结果加上分得的另一个数。

第三种方法:逆向思维,做减法想加法,9(8)加几等于十几,十几减9(8)就等于几。第四种方法:十几减9可以想成用个位数加1。(十几减9就用几加1)

以上几种方法不是要求每一位学生全部掌握,但是要求学生明确退位减法的算理。跳伞表演(十几减内的退位减法(二))知识点:

1、正确计算十几减7、减6等数的减法。(减5、4、3、2等数的减法在教学实际情况中进行穿插安排。)

2、进一步感知解题策略的多样性。美丽的田园(解决问题)知识点:

1、学会用数学知识解决简单的实际问题。

2、巩固20以内的进位加法和退位减法。

3、使学生能根据一个加法算式写出两道减法算式。

4、多角度的认识一个数,建立数感。

八认识钟表各课知识点:

小明的一天(认识整时和半时)知识点:

1、初步认识钟面,知道钟面的数字以及长短针的作用,知道指针转动的方向。

2、正确认读整时、半点。并说出时针和分针在整时和半点的指向特点。小芳的上午(估计接近整时的时间)知识点:

1、进一步巩固认读整时、半时。

2、估计整时应先看时针所指的位置,再看分针是否在数字12的左右。九统计

各课知识点:

最喜欢的水果(象形统计图)知识点:

1、初步体验数据的收集、整理过程,认识统计图和简单的统计表,能根据图表回答一些简单的问题。

2、统计活动的重心不应该放在如何制作统计图表上,可以事先为学生准备统计图表让学生填补完整,着重对填补完整的统计图表进行分析、解释和应用。这样才能体会统计活动的意义和必要性。迎新年知识点:

1、学会独立观察与思考,能根据图意提出问题、解决问题。

2、通过活动复习统计图、表的有关知识。复习长方体、正方体、圆柱体和球四种几何形体。

一年级上册数学知识点篇十三

(一)本单位知识网络:

(二)加减法认识11~20各数,能正确数数、读数和写数,并掌握20以内数的顺序,及数位的排列,从右边起,第一位是个位,第二位是十位初步了解十进制,会比较20以内数的大小学会20以内不进位加法和不退位减法,及进位加法和退位减法,并体会计算方法的多样性,能解决与此相关的问题

(三)各课知识点:

1、捆小棒(11~20各数的认识)

知识点:

(1)计数器表示数的方法是摆小棒表示数的方法的简化和抽象:

(2)计数器上的数的“十位”与“捆”对应,“个位”与“根”对应。这次抽象形成了极为重要的位值概念。

(3)认识一个新的计数单位“十”,知道“从右边起,第一位是个位,第二位是十位。”

(4)在摆一摆、数一数、捆一捆活动中,认学生认、读、写11~20各数。掌握20以内数的顺序、大小以及数的组合。

2、搭积木(十几加(减)几的加减法)知识点:

(1)用形象的积木,帮助学生认识不进位加法和不退位减法。(即在原有的基础上增加为加法,减少为减法。)

一年级上册数学知识点篇十四

一条拉紧的细线向两方无限延伸就是直线。

直线表示法①两大写字母法如直线ab或直线ba(字母无顺序性)

②小写字母法如直线a

①直线向两方无限延伸

②直线没有粗细不能度量长短。

③两点确定一条直线

④两直线相交只有一个交点。

⑤直线无端点但有无数个点

点与直线的位置关系:①点在直线上(也可说直线经过点)

②点在直线外(也可说直线不经过点)

过两点有一条直线,并且只有一条直线。(两点确定一条直线)

一年级上册数学知识点篇十五

1.比较两个事物的大小、多少、长短、高矮、轻重等,要以其中的一个事物作为参照,或者说以其中的一个事物作为标准,然后再比较,这样就能说另一个事物比作为标准的那个事物大或者小、多或少等。

比长短:常用的方法注意要一端对齐,也可以采用数格比较,或对称比较。

比高矮:注意在同一平面上去比较。

比多少:运用一一对应原则。

2,三个事物比较,可以先两个两个的比较。然后根据比较的结果,得出三个事物比较的结论。

如:a比b重,b比c重,那么可以得到a比c重。a最重,c最轻。

a比b重,a比c重,只能得到a最重,还要比较b和c,才知道谁最轻。

一年级上册数学知识点篇十六

(1)利用学具摆一摆、捆一捆,加深对数位和数的组成的认识。

(2)用丰富的游戏活动使本版块的复习变得不枯燥。游戏是一年级儿童最喜欢的活动。游戏让学生在玩中复习,在复习中玩,在玩与复习相结合中发展。如复习20以内数的认识,让学生玩猜数(小棒有多少根)等游戏,加深数感。又如加减法计算的复习,避免出现单纯的题海练习,让学生厌倦。可以设计爬梯子、找朋友、对口令、开火车、抢答等游戏活动,学生边玩边熟练加减法的正确计算。在本期结束时,学生要达到每分钟能正确计算8道题左右。

训,如:( )+6=15,尤其是( )-7=7,学生容易填成0。 在○里填上“+”或“-” 9○6=15 16○5=11 (4)对于解决简单实际问题的复习:

①从类型上分包括求和、求差、求部分数。并注意体现三种类型之间的联系,注重系统练习。如:8个苹果,5个梨,苹果和梨一共多少个? 苹果比梨多多少个? 梨比苹果少多少个? 一共13个水果,苹果有8个,剩下的是梨梨有多少个? 一共13个水果,梨有5个,剩下的是苹果苹果有多少个? 再如:看图列四道算式

②从呈现方式上看可分为形象图、情境图、部分抽象的文字表示。 注意强调计算为问题服务的意识,看清题上要求的是什么。允许部分学生用()表示要求的数。

③应用连加、连减、加减混合解决问题,学生容易理解的是如:p45,1题,动态的呈现形式, 包括去掉一部分又来了一部分。较难理解的是p47,4题,这种静态呈现的。

④加强培养学生提问的意识和能力。

一年级上册数学知识点篇十七

“凑小数,拆大数”,将小数凑成10,然后再计算。

如:3+9(3+7=10,9可以分成7和2,10+2=12)

“凑大数,拆小数”,将大数凑成10,然后再计算。

如:8+7(8+2=10,7可以分成2和5,10+5=15)

注意:孩子喜欢和熟悉的方法才是方法而且只掌握一种就可以了。

11+6(个位相加,1+6=7)11+6=17

15-3(个位上够减,5-3=2)15-3=12

加强进位和不进位、及不退位的训练。

看图列式解题时候,要利用图中已知条件正确列式。

常用的关系有:

(1)部分数+部分数=总数:这时?在大括号下面的中间。

(2)总数-部分数=另一个部分数:这时?在大括号的上面一边。

(3)大数-小数=相差数:谁比谁多几,或谁比谁少几。

(4)原有-借出=剩下:用了多少,求还剩多少时用。

10的合成与分解儿歌

你拍一,我拍一,我们从小爱学习。1+9=10,10可以分成9和1。

你拍二,我拍二,互助友爱好伙伴。2+8=10,10可以分成8和2。

你拍三,我拍三,养成卫生好习惯。3+7=10,10可以分成7和3。

你拍四,我拍四,放学认真做值日。4+6=10,10可以分成6和4。

你拍五,我拍五,质疑答问要举手。5+5=10,10可以分成5和5。

你拍六,我拍六,勤奋努力争上游。6+4=10,10可以分成4和6。

你拍七,我拍七,创建先进班集体。7+3=10,10可以分成3和7。

你拍八,我拍八,全面发展人人夸。2+8=10,10可以分成2和8。

你拍九,我拍九,反复验算不马虎。9+1=10,10可以分成9和1。

你拍十,我拍十,为人做事要诚实。10+0=10,10可以分成0和10。

方法1

提高口算能力-基础性训练。小学生的年龄不同,口算的基础要求也不同。低中年级主要在一二位数的加法。高年级把一位数乘两位数的口算作为基础训练效果较好。具体口算要求是,先将一位数与两位数的十位上的数相乘,得到的三位数立即加上一位数与两位数的个位上的数相乘的积,迅速说出结果。这项口算训练,有数的空间概念的练习,也有数位的比较,又有记忆训练,在小学阶段可以说是一项数的抽象思维的升华训练,对于促进大家思维及智力的发展是很有益的。大家可以把这项练习安排在两段的时间进行。一是早读的时候,一是在家庭作业完成后安排一组。每组是这样划分的:一位数任选一个,对应两位数中个位或十位都含有某一个数的。每组有18道,大家先写出算式,口算几遍后再直接写出得数。这样持续一段时间后,会发现自己口算的速度、正确率都会大大提高。

方法2

小学一年级数学涉及到的知识有:数一数、比一比、1-10的加减、11-20数的进位加法、认识简单物体图形等,都是基础的知识点,但是相对于一年级的孩子来说这些简单的知识却未必简单,我们针对一年级数学的特点总结了这个学习方法,希望对一年级的小朋友们有所帮助。

方法3

交叉线验算法,就是先在草稿纸上画出两条交叉的直线,再分别把被乘数、乘数和积的每一位上的数横着加起来,看是不是一位数,如果不是就再加一次,直到成为一位数为止。这样可得到三个一位数,分别是a、b、c。把它们分别写在交叉线上。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服