作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。那么我们该如何写一篇较为完美的教案呢?下面是小编为大家带来的优秀教案范文,希望大家可以喜欢。
小学数学解方程教案篇一
随着学生学习知识的迁移,让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,既巩固了小学基础知识,又为初中教学打下坚实的基础。
知识与技能:让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,运用相关规律,熟练的进行解方程计算。
过程与方法:让学生通过体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。
情感态度与价值观:运用“勾漏”双向四步教学法,适当创设教学情境,激发学生的学习兴趣。
教学重点:让学生在让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,掌握各类解方程的一些规律,运用相关规律,熟练的进行解方程计算。
教学难点:让学生体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。
“勾漏”双向四步教学法;观察法、比较法、归纳法。
教学课件
(一)、勾人入境:
同学们,利用等式的性质我们学会了解方程,其实上,熟练后,我们可以不用写得那么麻烦,三言两语就可以轻松地解方程了啊!想学吗?
(二)、漏知互学:
我们先按运算符号把方程分成四大块:一、加法方程,二、乘法方程;三、减法方程;四、除法方程
先来看第一大块的加法方程
186+x=200
用等式的性质这样解:
186+x=200
解:x+186—186=200—186
x=14
熟练后可以这样解:
186+x=200
解:x=200—186
x=14
有什么规律呢?先看符号(+、-符号相反)再看数字(数字顺序也相反),那合起来说就是:加法方程,数符相反。有趣吗?
现在我们再看第二大块的乘法方程
36×x=108
用等式的性质这样解:
36×x=108
解:x×36÷36=108÷36
x=3
熟练后可以这样解:
36×x=108
解:x=108÷36
x=3
师:他们又有什么规律呢?(课件展示)哦真聪明!乘法方程与加法方程的规律一样,数字顺序和运算符号都相反了,所以我们把乘法方程与加法方程合在一起称为:乘加方程,数符相反。明白了吗?记住了吗?
现在我们再来看第三大块,减法方程:
x—36=12
用等式的性质这样解:
x—36=12
解:x—36+36=12+36
x=48
熟练后可以这样解:
x—36=12
解:x=12+36
x=48
那么它们又有什么规律呢?先看未知数x都在减号前,接下来的运算符号都用加法,那么是不是所有的减法方程都是用加法呢?别急,请看:
108—x=60
用等式的性质可以这样解:
108—x=60
解:108—x+x=60+x
108 =60+x
60+x =108
x+60-60 =108-60
x=48
熟练后可以这样解:
108—x=60
解:x=108—60
x=48
同学们,比较一下,这两题减法方程与上面两题有什么不同呢?对,未知数x都在减号后面,运算符号都是用减法,那么我们就可以把这两张种减法方程合并起来说:减法方程,前加后减。未知数x在减号前用加法,未知数x在减号后,用减法。
接下来我们再来学习第四块,除法方程:
x÷12=5
用等式的性质可以这样解:
x÷12=5
解:x÷12×12=5×12
x=60
熟练后可以这样解:
x÷12=5
解:x=5×12
x=60
同学们,你发现了什么?对,眼睛真厉害!未知数x在除号前,解完这道题,谁发现,有没有似曾相识的感觉:与减法一样,
1、未知数x在除号前面,
2、都用乘法,
3、数字没有相反。
怎么办,对,先算完另外一种情况(x在除号后的)再说,那么请开始吧。
48÷x=3
用等式的性质可以这样解:熟练后可以这样解:
48÷x=3 48÷x=3
解:48÷x×x=3×x解:x=48÷3
48=3×x x=16
3×x=48
x=48÷3
x=16
仔细观察比较,你发现了什么?解除法方程的规律你找到了吗?
1、未知数x在除号后面,
2、都用除法,
3、数字没有相反。
以上说明在除号前后的计算方法不一样,那么它的规律要根据x在除号前后来判断,x在除号前用乘法,x在除号后用除法,从而得出他的规律是除法方程,前乘后除,它和减法有类似感。
(三)、流程对测:
小组内各出加减乘除的方程各一条,然后交换计算,看谁算得又快又准确。
小组开始探究,教师巡逻指导
(四)、结课拓展:请同学们说说这节课你学到了什么?
小学数学解方程教案篇二
列方程解应用题最关键是前两步:设未知数和列方程。有的同学说解方程的部分不是篇幅很长么,为什么不是关键部分呢?其实,只要仔细观察一下,就会发现,虽然篇幅很长,但只要注意到符号变化、分配律等基本运算技巧,解的过程是较容易掌握的。相反,前两步篇幅虽然短,但列方程解应用题的精华和难点却大部分集中在这里,需要用以体会。
一般地,设什么量为未知数,最简单明了的想法是设所求为x(复杂的题目有时要采取迂回战术,间接地设未知数),当所求的数较多时,把这些所求的数量用一个或尽量少的未知数表达出来,也是很重要的。
设完未知数,就要找等量关系,来帮助列出方程。这时需要认真读题,因为许多等量关系是隐藏在字里行间的。中文有很多字、词、句表达相等的意思,如相等、是、比多、比少、是的几倍、的总和是、与的差是等等,根据这些字句的含义,再加上其中的量用未知数表达出来,就能列出方程。
列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值,列方程解应用题的优点在于可以使未知数直接参加运算。解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程。而找出等量关系又在于熟练运用数量之间的各种已知条件。掌握了这两点就能正确地列出方程。
(1)列方程解应用题的一般步骤是:
1)弄清题意,找出已知条件和所求问题;
2)依题意确定等量关系,设未知数x;
3)根据等量关系列出方程;
4)解方程;
5)检验,写出答案。
(2)初学列方程解应用题,要养成多角度审视问题的习惯,增强一题多解的自觉性,逐步提高分析问题、解决问题的能力。
(3)对于变量较多并且变量关系又容易确定的问题,用方程组求解,过程更清晰。
经典例题
例1 某县农机厂金工车间有77个工人。已知每个工人平均每天加工甲种零件5个或乙种零件4个或丙种零件3个。但加工3个甲种零件、1个乙种零件和9个丙种零件才恰好配成一套。问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套。
思路剖析
如果直接设生产甲、乙、丙三种零件的人数分别为x人、y人、z人,根据共有77人的条件可以列出方程x+y+z=77,但解起来比较麻烦 如果仔细分析题意,会出现除了上面提到的加工甲、乙、丙三种零件的人数为未知数外,还有甲、乙、丙三种零件各自的总件数也未知。而题目中又有关于甲、乙、丙三种零件之间装配时的内在联系,这个内在联系可以用比例关系表示,而乙种零件件数又在中间起媒介作用。所以如用间接未知数,设已种零件总数为x个,为了配套,甲种、丙种零件件数总数分别为3x个和9x个,再根据生产某种零件人数=生产这种零件的个数工人劳动效率,可以分别求出生产甲、乙、丙种零件需安排的人数,从而找出等量关系,即按均衡生产推算的总人数,列出方程 解 答
设加工乙种零件x个,则加工甲种零件3x个,加工丙种零件9x个。
答:应安排加工甲、乙、丙三种零件工人人数分别为12人、5人和60人。
例2 牧场上长满牧草,每天牧草都匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?
思路剖析
这是以前接触过的牛吃草问题,它的算术解法步骤较多,这里用列方程的方法来解决。
设供25头牛可吃x天。
本题的等量关系比较隐蔽,读一下问题:每天牧草都匀速生长,草生长的速度是固定的,这就可以发掘出等量关系,如从供10头牛吃20天表达出生长速度,再从供15头牛吃10天表达出生长速度,这两个速度应该一样,就是一种相等关系;另外,最开始草场的草应该是固定的,也可以发掘出等量关系。
解 答
设供25头牛可吃x天。
由:草的总量=每头牛每天吃的草头数天数
=原有的草+新生长的草
原有的草=每头牛每天吃的草头数天数-新生长的草
新生长的草=草的生长速度天数
考虑已知条件,有
原有的草=每头牛每天吃的草1020-草的生长速度20
原有的草=每头牛每天吃的草1510-草的生长速度10
所以:原有的草=每头牛每天吃的草200-草的生长速度20
原有的草=每头牛每天吃的草150-草的生长速度10
即:每头牛每天吃的草200-草的生长速度20
=每头牛每天吃的草150-草的生长速度10
每头牛每天吃的草200草的生长速度20+每头牛每天吃的草150-草的生长速度10
每头牛每天吃的草200-每头牛每天吃的草150
=草的生长速度20-草的生长速度10
每头牛每天吃的草(200-150)=草的生长速度(20-10)
所以:每头牛每天吃的草50=草的生长速度10
每头牛每天吃的草5=草的生长速度
因此,设每头牛每天吃的草为1,则草的生长速度为5。
由:原有的草=每头牛每天吃的草25x-草的生长速度x
原有的草=每头牛每天吃的草1020-草的生长速度20
有:每头牛每天吃的草25x-草的生长速度x
=每头牛每天吃的草1020-草的生长速度20
所以:125x-5x=11020-520
解这个方程
25x-5x=1020-520
20x=100
x=5(天)
答:可供25头牛吃5天。
例3 某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?
解 答
设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程
解法一:用直接设元法。
80x-40=(30x+40)2
80x-40=60x+80
20x=120
x=6(座)
解法二:用间接设元法。
设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。
(x-40)30=(2x+40)80
(x-40)80=(2x+40)30
80x-3200=60x+1200
20x=4400
x=220(米3)
由灰砖有220米3,推知修建住宅(220-40)30=6(座)。
同理,也可设有红砖x米3。留给同学们练习。
答:计划修建住宅6座。
例4 两个数的和是100,差是8,求这两个数。
思路剖析
这道题有两个数均为未知数,我们可以设其中一个数为x,那么另一个数可以用100-x或x+8来表示。
解 答
解法一:设较小的数为x,那么较大的数为x+8,根据题意它们的和是100,可以得到:
x+8+x=100
解这个方程:2x=100-8
所以 x=46
所以 较大的数是 46+8=54
也可以设较小的数为x,较大的数为100-x,根据它们的差是8列方程得:
100-x-x=8
所以 x=46
所以 较大的数为100-46=54
答:这两个数是46与54。
小学数学解方程教案篇三
本节课的教学任务是使学生了解等式性质(二),并会用这个性质解方程。由于学生在探究等式性质(一)时已经具备了一定的学习经验,因此本节课的教学设计主要突出以下两点:
1、在操作实践中验证等式性质(二)。
在教学中,通过学生的亲身实践,边操作边观察边总结,使等式性质(二)顺利地生成,同时让学生对此有直观的理解,强化学习效果。
2、通过直观图理解解方程的过程。
在指导学生利用等式性质(二)解方程时,充分发挥了直观图的作用,加深学生对解方程的过程和依据的了解,提高学习效率。
教师准备:
ppt课件
学生准备:
天平,若干个贴有标签的砝码
教学过程
师:谁能说出我们学过的等式性质?
[学生回顾上节课学习的内容,并汇报:等式两边同时加上(或减去)同一个数,等式仍然成立]
引导学生猜想:等式两边都乘同一个数(或除以同一个不为0的数),等式是否仍然成立呢?思考并在小组内交流自己的想法,然后汇报。
设计意图:学生已经学过了等式两边都加上(或减去)同一个数,等式仍然成立的性质。上课伊始,先复习所学知识,并由此进行合理猜想,再自然地引入新课,直奔主题。
师:大家的猜想对不对呢?我们来验证一下。
1、(课件演示,学生操作)天平左侧的砝码重x克,右侧放5克的砝码,这时天平的指针指向正中央,说明了什么?你知道左侧的砝码重多少克吗?怎样用等式表示?(说明天平平衡,左侧的砝码重5克,x=5)
2、如果左侧再加上2个x克的砝码,右侧再加上2个5克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,3x=3×5)
3、如果左侧有2个x克的砝码,右侧有2个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x=20)
4、如果左侧拿走一个x克的砝码,右侧拿走一个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x÷2=20÷2)
5、通过上面的游戏,你发现了什么?
小结:等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。
设计意图:利用课件的演示和动手操作,让学生体会天平两侧的变化情况,加深学生对等式的理解,体会等式的变化规律。
1、(课件出示教材70页方程:4y=2000)
师:你们能求出这个方程的解吗?
(学生先独立尝试,然后小组交流,并汇报)
方法一:想?×4=2000,直接得出答案。
方法二:用等式性质解方程,方程的两边都除以4,从而得出答案。
师:为什么方程的两边都除以4,依据是什么?
生:依据是等式的两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。
让学生说出用等式性质解方程的过程。
小学数学解方程教案篇四
解方程:教材p69例4、例5。
1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。
2.进一步掌握解方程的书写格式和写法。
3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。
理解在解方程过程中,把一个式子看作一个整体。
理解解方程的方法。
一、导入新课
我们上节课学习了解方程,这节课我们来继续学习。
二、新课教学
1.教学例4。
师:(出示教材第69页例4情境图)你看到了什么?
生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。
师:你能根据图列一个方程吗?
生:3x+4=40。
师:你是怎么想的?
生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。
师:说得好,你能解这个方程吗?
学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)
师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?
生:先算出3个铅笔盒一共多少支,再加上外面的4支。
师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。
让学生尝试继续解答,教师根据学生的回答,板书解题过程。也可以让学生同桌之间再说一说解方程的过程。
2.教学例5。
师:(出示教材第69页例5)你能够解这个方程吗?
生1:我们可以参照例4的方法,先把x-16看作一个整体。
学生解方程得x=20。
生2:我们也可以用运算定律来解。
师:2x-32=8运用了什么运算定律?
生:运用了乘法分配律。然后把2x看作一个整体。
学生解方程得x=20。
师:你的解法正确吗?你如何检验方程是否正确?
生:可以把方程的解代入方程中计算,看看方程左右两边是否相等。
三、巩固练习
教材第69页“做一做”第1、2题。
第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。
这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。
四、课堂小结
1.在解较复杂的方程时,可以把一个式子看作一个整体来解。
2.在解方程时,可以运用运算定律来解。
五、布置作业
教材第71页“练习十五”第6、8、9.题。
小学数学解方程教案篇五
(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
(2)初步理解等式的基本性质,能用等式的性质解简易方程。
(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。
(4)重视良好学教学重、难点:
(1) “方程的解”和“解方程”之间的联系和区别。
(2)利用天平平衡的道理理解比较简单的方程的方法。
一.揭示课题
师:(出示课件)老师在天平的左边放了一杯水,杯重100克,水重x克,一杯水重多少?
生:(100+x)克
师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)
师:请你根据图意列一个方程。生:100+x=250(课件显示:100+x=250)
师:这个方程怎么解呢?就是我们今天要学
二.探究新知,理解归纳
(1)概念教学:认识“方程的解”和“解方程”的两个概念
师:(出示课件)那你猜一猜这个方程x的值是多少?并说出理由。
生1:我有办法,可以用250-100=150,所以x=150.
生2:我有办法,因为100+150=250,所以x=150
生3:老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出x=150师:黎明同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩x克水,而天平保持平衡。
生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。
师:你能根据操作过程说出等式吗?
生:100+x-100=250-100
(课件显示:100+x-100=250-100)
师:这时天平表示未知数x的值是多少?生:x=150(课件显示:x=150)
师:是的,黎明同学的想法是正确的,方程左右两边同时减100,就能得出x=150。我们表扬他。把掌声送给他。
师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。师:(课件显示x=150的)指着方程100+x=250说:“x=150是这个方程的解。(课件显示:方程的解)
师:100+x=250 100+x-100=250-100说:“这是求方程的解的过程,叫解方程。
师:在解方程的开头写上“解:”,表示解方程的全过程。(课件显示:解:)
师:同时还要注意“=”对齐。师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。
师:你们怎么理解这两个概念的? (学生独立思考,再在小组内交流。)
师:谁来说说你想法?
生1:“解方程”是指演算过程
生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。
师:“方程的解”和“解方程”的两个解有什么不同?
生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。
[设计意图:通过自主学精神。]
(2)教学例1。
师:要是老师出一个方程,你会求这个方程的解吗?
生:会。
师:请自学第58页的例1的有关内容。
[学生独立学师:(出示例1)左边有x个,右边有3个,一共用9个。根据图意列一个方程。
生:x+3=9(板书:x+3=9)
师:x+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。师:怎样操作才使天平的左边只剩x,而天平保持平衡。
生:天平左右两边同时拿走3个球,使天平左边只剩x,天平保持平衡。(教师随着学生的回答演示课件)
师:根据操作过程说出等式?
生:x+3-3=9-3(板书:x+3-3=9-3)
师:这时天平表示x的值是多少?生:x=6(板书:x=6)
师:方程左右两边为什么同时减3?
生1:使方程左右两边只剩x。
生2:方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。
师:“方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。”就是解这个方程的方法。
师:这个方程会解。我们怎么知道x=6一定是这个方程的解呢?生:验算。
师:对了,验算方法是什么?
生:将x=6代入原方程,看方程的左边是否等于方程的右边。
(板书:验算:方程的左边=6+3=9方程的右边=9
方程的左边=方程的右边所以,x=6是方程的解。)
师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的解方程:3x=18?
[学生独立思考,再在小组内交流。]
汇报交流,指生说,然后课件演示。
方程两边同时除以一个不等于0的数,左右两边仍然相等。
做一做:
身高问题
小明去年的身高+比去年长高的8cm=今年的身高
小明今年的身高-小明去年的身高=8cm
小明今年的身高-8cm=小明去年的身高
小红高165cm,比小华高10cm,小华高多少cm?
我们用桶接水接了30分钟水,一共接了1.8kg,每分钟接水多少克?
三、巩固应用
1、填空。
(1)使方程左右两边相等的( )叫做方程的解。
(2)求方程的解的过程叫做( )。
(3)比x多5的数是10。列方程为( )
(4)8与x的和是56。方程为( )
(5)比x少1.06的数是21.5。列方程为( )。
2、你能说出下列方程的解是多少吗?
x+19=21 x-24=15
5x=10 x÷2=4
3、用含有字母的式子表示下列数量关系。
(1).比x多3的数。
(2).x的1.5倍。
(3).每枝铅笔x元,买30枝铅笔需要多少钱?
(4).小明13岁,比小红小x岁,小红多少岁?
4、练小结:解含有加法方程的步骤。(口述过程)
四、拓展延伸。
1、挑战501—— 502
五年级参加科技小组的人数是34人,比参加文艺小组的人数的2倍少6人,参加文艺小组人数有多少人?(写出数量关系式,列方程解)
师:看来,解加法方程同学们掌握得很好,老师得提高一点难度,敢挑战吗?
生:敢。
师:谁愿意读读这个方程? [学生都争着读这个方程,可激烈了]
师:这是一个含有减法的方程,你能根据解加法方程的步骤,尝试完成。
(指名王欣同学到黑板板演,其他同学在单行纸完成) [学生试着解方程并进行口头验算]
2、集体交流、评价、明确方法。
师:王欣同学做对了吗?生:对。
师:方程左右两边为什么同时加几?
生:方程左右两边同时加6,使方程左边只剩2x,方程左右两边相等......(由板演
王欣同学面向大家回答)
3 、提炼升华
师:谁能说说解含有加法和减法的方程的步骤?(随着学生,课件显示全过程。)
生:解方程的步骤:
a)先写“解:”。
b)方程左右两边同时加或减一个相同的数,使方程左边只剩x,方程左右两边相等。
c)求出x的值。
d)验算。
4、全课小结,评价深化
通过今天的学以小组为单位自评或互评课堂表现,发扬优点、改正缺点。
对老师的表现进行评价。
[设计意图:教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学总结失败原因,发扬成功经验,培养良好的学习习惯。]
[板书设计]解方程例1:书本图x+3=9验算:x-2=15解:x+3-3 =9-3方程左边= 6+3=9解:x-2+2=15+2 x=6方程右边= 9 x=17方程左边=方程右边所以,x=6是方程的解。
小学数学解方程教案篇六
1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。
2、会用等式性质解形如x+5=12的简单方程。
3、培养观察、分析概括的能力。
1课时
能用等式的性质解简单的方程。
了解等式的性质。
(一)导入新课
故事引入:在古代三国的时候,有人送给曹操一头大象,曹操要知道大象的重量,大臣们都不知道怎么办。这时小儿子曹冲却称出了船上石头的重量。你是怎样理解曹冲的方法的?
(板书:大象的体重=石头的重量)
师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。
检查预习。
(二)讲授新课
探究一:学习等式性质
1、师操作:在天平两侧各放一个5克砝码。
提问:你能用一个等式表示天两边关系吗?
提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都加上同一个数,等式仍然成立。
师操作在刚才的基础上一个一个减砝码。
提问:你能用等式来表示吗?
提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都减去同一个数,等式仍然成立。
3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的`依据。
(三)重点精讲。
探究二:学习解方程
师板书x+2=10问:用天平如何表示?
问:如何用刚才的知识解方程?(两边都减去2)
1、师根据学生回答板书并画出天平图。
2、师在解题示范时要注重“解”和“等于号”的书写要求。
3、交代检验方法。
4、学生试着解方程。
y-7=12 23+x=45
组内交流收获和疑惑。
小组汇报。
教师总结板书:根据等式的性质解方程。
(五)随堂检测
1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。
2、看图列方程,并解方程。
3、解方程。
(1)x – 19 = 2
(2)x - 12.3 = 3.8
4、看图列方程,并解方程。
5、看图列方程,并解方程。
6、看图列方程,并解方程。
板书设计
x+5=7 x-5= 7
解:x+5-5=7-5解:x-5+5=7+5
x=2 x=12
等式的两边同时加上或者减去同一个数,等式仍然成立。
课本69页5、6题
小学数学解方程教案篇七
1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。
2、利用探索发现的等式的性质,解决简单的方程。
3、经历了从生活情境的方程模型的建构过程。
4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。
重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。
难点:推导等式性质(一)。
一架天平、课件及班班通
一、创设情境,以情激趣
师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?
学生讨论纷纷。
师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?
二、运用教具,探究新知
(一)等式两边都加上一个数
1、课件出示天平
怎样看出天平平衡?如果天平平衡,则说明什么?
学生回答。
2、出示摆有砝码的天平
操作、演示、讨论、板书:
5=5 5+2=5+2
x=10 x+5=15
观察等式,发现什么规律?
3、探索规律
初次感知:等式两边都加上同一个数,等式仍然成立。
再次感知:举例验证。
(二)等式两边都减去同一个数
观察课件,你又发现了什么?
学生汇报师板书:
x+2=10
x+2-2=10-2
x =8
(三)运用规律,解方程
三、巩固练习
1、完成课本68页“练一练”第2题
先说出数量关系,再列式解答。
2、小组合作完成69页“练一练”第3题。
完成后汇报,集体订正。
四、课堂小结
这节课你学到了什么?学生交流总结。
板书设计: 解方程(一)
x+2=10
解: x+2-2=10-2 ( 方程两边都减去2)
x =8
小学数学解方程教案篇八
数学书p58-p59及“做一做”,练习十一第5-7题。
1、 结合具体图例,根据等式不变的规律会解方程。
2、 掌握解方程的格式和写法。
3、 进一步提高学生分析、迁移的能力。
掌握解方程的方法。
一、导入新课
二、新知学习
(一) 教学例1
出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9
要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式
方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3
化简,即得: x=6
这就是方程的解,谁再来回顾一下我们是怎样解方程的?
左右两边同时减去的为什么是3,而不是其它数呢?
追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。
要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。
板书:方程左边=x+3=6+3=9=方程右边
所以, x=6是方程的解。
小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。
(二) 教学例2
利用等式不变的规律,我们再来解一个方程。
出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。
抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。
展示、订正。
通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?
(三) 反馈练习
1、 完成“做一做”的第1题。
2、 试着解方程:x-2.4=6 x÷9=0.7 (强调验算)
三、课堂小结。
这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?
四、作业:练习十一5—7题。
解方程教学反思
在本节课中我力图直观,让学生在直观的操作与演示中自主建构。同时借助观察、操作、猜想与验证,一方面来促使学生进一步理解等式的性质,能利用等式的性质来解方程,同时也让学生抽象方程,解释算理中来经历代数的过程,发展学生的数感及数学素养。
1、在具体情境中理解算理,经历代数的过程。
本节课属于典型的计算课,所以算理与算法是二条主线,今天的算法主要是突破学生原有的认知,能够利用天平的原理来解方程,所以理解算理,让学生体验到解方程只要使天平的一边剩下一个未知数,但要在这个变化中必须使天平保持平衡,可以通过在天平的左右二边同时减去相同的数是本节课的重点。我通过创设情境,让学生来领悟算理,突显出本节课的重点。
2、在直观操作中掌握方法,发展数学素养。
在本节课中,通过充分的直观,利用学生熟悉的素材,力图把方程建构于天平之中,在学生的头脑中建立深刻的模像。同时,在让学生用自己的生活,用自己的操作解释、验证中发展学生的数学素养。
3、困惑:纵观学生的起点,他们已经具有丰富的生活经验与知识背景来解简单的方程,所以在教学中运用“逆运算”来解方程对于采用天平的原理来解方程造成了相当的冲突,部分学生虽然对于运用天平原理来解方程已经十分理解,但他们还是不愿意用这种方法,主要的原因是他们体验不到这种方法的优越性,所以如何在本节课中让学生体验到天平原理的优越性,从而自愿的采用这种方法,没有好的策略?
小学数学解方程教案篇九
1、使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
2、初步理解等式的基本性质,能用等式的性质解简易方程。
3、重视良好学习习惯的培养。
1、“方程的解”和“解方程”之间的联系和区别。
2、利用天平平衡的道理会解形如x±a=b的方程,并检验。
理解形如x±a=b的方程原理,掌握正确的解方程格式及检验方法。
一、创设情境,回顾旧知
师:今天在上课前我们来玩一个游戏“我说你答”。以保持天平的平衡如“我在天平的右边增加一个橘子”;“我在天平的左边增加一个同样的橘子”;“天平的左边排球数量扩大到原数的2倍变成4个排球”,“天平的右边的皮球数量扩大到原数的2倍,变成8个皮球”…
师:同学们有这么多让天平平衡的方法,能概括一下让天平平衡的方法吗?
二、探究新知,引出课题
1.通过解方程,认识“方程的解”和“解方程”的两个概念。
师:老师在天平的左边放了一杯水,杯重100克,水重x克,一杯水重多少?
师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)
师:请你根据图意列一个方程。
学生回答教师板书:100+x=250
师:这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)
师:(指着方程)那你猜一猜这个方程x的值是多少?并说出理由
预设:生1:我有办法,可以用250-100=150,所以x=150.
生2:我有办法,因为100+150=250,所以x=150
师:谁能用天平平衡的道理来解呢?
生3:老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出x=150
师:课件探索验证一下。请看天平,怎样操作才使天平左边只剩x克水,而天平保持平衡。
生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。
师:你能根据操作过程说出等式吗?
师:是的,xxx同学的想法是正确的,方程左右两边同时减100,(这样方程左边就只剩x)就能得出x=150。
师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。
师:指着方程100+x=250说:“x=150”是这个方程的解。(板书:方程的解)
100+x=250
100+x-100=250-100
师指着方框说:“刚才我们求方程的解的过程,叫解方程。
师:在解方程的开头写上“解:”,表示解方程的全过程。
师:同时在书写的时候还要注意“=”对齐。
师:你们怎么理解这两个概念的?(课件出示两个概念)
师:谁来说说你想法?
师:“方程的解”和“解方程”的两个解有什么不同?
小结:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演算过程。
2.尝试解x-a=b形的方程。
师:出示x-3=9(板书)
学生尝试,请一人板演
汇报,评价
师:你是怎么想的?
师:是不是这样的,请看屏幕。(请一位学生说,教师用课件演示)
生:天平左右两边同时放上3个方块,使天平左边刚好是x,天平保持平衡。
师:这时天平表示x的值是多少?
师:讨论方程左右两边为什么同时加3?
生:方程左右两边同时加3,使方程左边只有x,方程左右两边相等。
小结:“方程左右两边同时加3,使方程左边只有x,方程左右两边相等。”就是解这个方程的方法。
师:这个方程会解。我们怎么知道x=12一定是这个方程的解呢?
师:对了,验算方法是什么?
自习课本第58页,模仿检验的书写过程
根据学生的回答板书:
验算方程左边=x-3
=12-3
=9
=方程的右边
所以,x=12是方程的解。
小结:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。
三、巩固练习
(1)判断题
a.x=3是方程5x=15的解。()
b.x=2是方程5x=15的解。()
你是怎么想的?
(2)考考你的眼力,能否帮他找到错误所在呢?
x+1.2=4x+2.4=4.6
x+1.2-1.2=4-1.2=4.6-2.4
x=2.8=2.2
小结:解方程首先要写“解”,x每步都不能离,所有的等号要对齐,检验的习惯要牢记。
(3)填空题
x+3.2=4.6x-3.2=4.6
解:x+3.2○()=4.6○()解:x-3.2○()=4.6○()
x=()x=()
(4)解下列方程,带★的要验算
★x+2.8=7.9x-5=28
(5)完成课本59页做一做的第1题的左边一小题写在书上。
追问:x=2.8带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。
小结:解含有加法方程的步骤。
三、巩固延伸
师:谁能说说解含有加法和减法的方程的步骤?(随着学生,课件显示全过程。)
解方程的步骤:
a)先写“解:”。
b)方程左右两边同时加或减一个相同的数,使方程左边只剩x,方程左右两边相等。
c)求出x的值。
d)验算。
四、全课小结
通过今天的学习,同学们有哪些收获?
前一阶段的教学,我发现孩子们还是比较喜欢学习数学的,特别对方程都有一种与生俱来的好奇心。他们总觉得天平能启发着他们去解决这么神奇的方程,真是非常有趣,学得效果也不错。今天在整节课的教学中,引入有序,思路清晰,环节紧扣。可是学生学习十分被动,课堂可以说是死气沉沉,真的有点不习惯孩子们这样,据我对学生的理解利用天平这样的事物原型来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,学生应该比较感兴趣的,原因在哪儿呢?课后查找原因:
1、通过与学生的谈话发现学生过于紧张。
2、教师缺乏调节课堂气氛手段。
今后尽量要注重这方面的调节,兴趣是最好的老师,没有兴趣哪来的教学效果。
从学生作业反馈来看,学生深刻认识到:利用等式的性质解方程,看似麻烦,实则简单,不须思考各部分之间的关系。虽然这样教学学生有兴趣,效果比较理想,不仅一节课内完成了预订的教学任务,而且学生作业质量较高,仅二人书写格式有误。但也存在局限性,如a-x=b和a÷x=b,虽然教材没有要求解这类方程,但试卷和相应的练习有出现,因此,有必要特别利用一些时间给学生补充讲解这类方程解法。
小学数学解方程教案篇十
人教版五年级上册p57-59页
1、通过操作、演示,进一步理解等式的性式,并能用等式的性质解简单的方程,在解方程的过程中,初步理解方程的解与解方程。
2、通过创设情境,经历从具体抽象为代数问题的过程,渗透代数化思想,并通过验算,促进良好学习习惯的养成。
3、在观察、猜想、验证等数学活动中,发展学生的数学素养。
用等式的的性质解方程,理解算理
一、创设情境,引出方程
1、研究例1:
猜球游戏:出示一个乒乓球盒,猜里面有几个球?引导学生用字母来表示球数?
导语:要想精确知道多少个球?再给大家一些信息(课件出示:天平左边盒子和二个球,右边有七个球)
设问:能用一个方程来表示吗?板书x+2=6
二、探究算理
设问:你们知道x等于多少吗?那这个答案4你们是怎么想出来的吗?说说你们的想法?
预设:a、7-4=2;b、4+2=7,所以x=4,c、左右二边都拿掉二个乒乓球,右边还剩下4个,所以x=4
研究第三种想法:设问:左右同时拿个二个乒乓球天平会怎么样?
学生上台用天平演示
请学生们把刚才的过程用式子表示出来,板书:x+2-2=6-2
追问:你怎么想到是拿到二个乒乓球,而不是拿到一个或者三个呢?
尝试验算:板书:左边=4+2=6=右边,所以我们就说x=4是方程的解,板书方程的解,尝试说说方程的解;刚才我们求方程的解的过程叫做解方程。(可以自学书本)
讲解解方程的书写格式(与天平相对应)
小结:刚才我们用了好多方法来解方程,重点研究了第三种解方程的方法,这种方法我们用到了什么知识?课件再次演示后,得出方程的两边同时去掉相同的数,左右两边仍相等。
尝试:解方程:x-1=3,
想一想:如果要用天平的乒乓球,如何来表示出这个方程?
指名摆一摆,学生尝试解决,并用操作来验证
2、研究例2:3x=18
学生尝试后出示:3x÷3=12÷3
用小棒操作后交流后想法:方程的左右二同时除以一个相同的数(零除外),左右二边仍旧相等。
展示,课件演示后小结:方程的左右二边可以同时除以相同的数(零除外),左右二边仍旧相等,追问得到还可以同时乘以一个相同的数
总结:解方程时,我们都是想使方程的一边只剩下一个x,而且在这个过程中还要使方程保持平衡,我们可以采用……
三、巩固练习:
1、p59页1
2、后面括号中哪个是x的值是方程的解?
(1)x+32=76 (x=44, x=108)
(2)12-x=4 (x=16, x=8)
3、解方程
p59页第2题的前面四题,要求口头验算
四、总结:
五、机动:研究练习2中的第二题,怎么用今天的方法来解方程。
让"天平"植入解方程中
《解简易方程》是数与代数领域中的一个重要内容,是“代数”教学的起始单元,对于渗透与发展学生的代数化思想有着极其重要的作用。本节课教材在编写上为了实现中小学的衔接,改变了以往利用“加减法逆运算和乘除法逆运算”而是利用天平原理即等式的性质来解方程,由于学生在前面已经积累了大量的感性经验(逆运算)来解方程,对于今天运用天平的原理来解方程,造成了极大的干扰,所以在本节课中我力图直观,让学生在直观的操作与演示中自主建构。同时借助观察、操作、猜想与验证,一方面来促使学生进一步理解等式的性质,能利用等式的性质来解方程,同时也让学生抽象方程,解释算理中来经历代数的过程,发展学生的数感及数学素养。
1、在具体情境中理解算理,经历代数的过程。
新课程在数与代数的编排中最大的变化是取消了单独的应用题编排,而是把应用与计算紧密的结合起来编排,每一个内容都是以主题图的形式来呈现,主要的是目的是让学生在具休的情境中理解算理,同时也在计算教学中培养学生的应用意识。本节课属于典型的计算课,所以算理与算法是二条主线,今天的算法主要是突破学生原有的认知,能够利用天平的原理来解方程,所以理解算理,让学生体验到解方程只要使天平的一边剩下一个未知数,但要在这个变化中必须使天平保持平衡,可以通过在天平的左右二边同时加上、减去、乘以或者除以相同的数是本节课的重点。我通过创设情境,通过天平上的乒乓球的移动和补凑,来理解算理,而后利用小棒和棋子自己来解释说明算理,突显出本节课的重点。同时在情境的创设中,通过猜球,与天平的呈现信息,让学生经历由直观的生活抽象为化数化的过程,从中渗透化数化的思想。
2、在直观操作中掌握方法,发展数学素养。
新课程标准指出“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内 容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。”在本节课中,通过充分的直观,利用学生熟悉的乒乓球、小棒等素材,力图把方程建构于天平之中,通过导入时从直观到抽象,再到尝试时从抽象的式子分别直观的乒乓球与小棒来表示,打通天平与方程之间的关系,在学生的头脑中建立深刻的模像。同时,在让学生用自己的生活,用自己的图画,用自己的操作解释、验证中发展学生的数学素养。
二点困惑:
1、纵观学生的起点,他们已经具有丰富的生活经验与知识背景来解简单的方程,所以在教学中运用“逆运算”来解方程对于采用天平的原理来解方程造成了相当的冲突,部分学生虽然对于运用天平原理来解方程已经十分理解,但他们还是不愿意用这种方法,主要的原因是他们体验不到这种方法的优越性,所以如何在本节课中让学生体验到天平原理的优越性,从而自愿的采用这种方法,没有好的策略?
2、教材中回避了a-x=b与a/x=b二种方程,但在实践中经常要碰到,教师如何来解决这个问题?
一点遗憾:这节课在构思加入了大量的操作活动和直观材料,主要的目的是让学生解方程的过程中在学生的头脑中植入天平,并给学生以自我解释与验证的机会,但操作的作用在每一次实践中都没有得到最大化的发挥,如何来提高操作的效性,让操作的目标更明确,是以后这节课研讨中重点商切的问题。
小学数学解方程教案篇十一
义务教育人教版数学五年级上册67页内容。
1、通过演示操作理解天平平衡的原理。
2、初步理解方程的解和解方程的含义。
3、会检验一个具体的值是不是方程的解,掌握检验的格式。
1、提高学生的比较、分析的能力;
2、培养学生的合作交流的意识。
1、感受方程与现实生活的联系。
2、愿意与别人合作交流。
理解方程的解和解方程的含义,会检验方程的解。
利用天平平衡的原理来检验方程的解。
天平与方程的联系。
课件
师:明明周末在超市玩起了称糖果的称,我们一起合作使称保持平衡!
师:同学们反映真敏捷,能通过观察马上想出使天平保持平衡的策略。
生:从中你有什么想说的?或者你联想到了什么?
生:只要两边都拿掉或增加相同数量的糖果,就能保持平衡;让我想到了等式的性质(全班一起口答:等式两边加上或减去同一个数,左右两边任然相等;等式两边乘同一个数,或除以同一个部位0的数,左右两边任然相等)(板书“等式性质”)
师过渡:是的,知识就是这样被有心人所发现的。
师:这里有个纸箱里面装着一些足球,你猜会有几个呢?(课件逐步出示)
再给你点信息,这幅图谁能用一个方程来表示。
生列方程,并说说你是怎么想的。
1、解方程
师:在这个方程中,x的值是多少呢?(学生思考,小范围交流)
汇报预设:①因为9-3=6②因为6+3=9所以x的值为6 所以x的值为6 (多少)
师引导:当然,我知道这么简单的问题是难不住大家的,但是我们的思考不能停止,从今天开始我们将学习怎样利用天平保持平衡的原理来寻求x的值,这种思考的方法到初中遇上更加复杂的方程时仍然会用到。
师:现在我们就将x+3=9这个方程转换到天平上来?(黑板贴图)
师:球在天平不好摆,我们可以用方块来代替它。
自主尝试:看着天平,如何去寻求x的值?
请用笔记录下你的想法。
组织好语言上台汇报你的想法。
教师统一书写:
师介绍:求解x的过程我们在最前面写“解”字。(板书写“解”字)
追问:两边都拿掉3个,天平还能平衡吗,两边还相等吗?(贴图展示)
为什么要减3个?(可以方程的一边只剩x,就可以知道x=?)(再叫2-3个)
生活动:我们看着板书来说说是怎么成功得到x的值,每一步的依据是什么。(2-3个)
你学会了吗?赶紧和你的同桌说一说方法。
2、强调格式:
师:这个求解的过程和以前递等式有什么区别或相同的地方?
生:等号对齐;等号两边都要写;最前面要写解字
3、练习一:
师:按照大家借助天平运用等式性质的想法,就是说当我们遇到方程33+x=65你也能求解? 解:33+x○( )=65○( )
x=( ) 那么x-4.5=10 呢?(学生独立尝试,一个学生板演)
生完成填空和独立节解方程。(课件中校对)
4、介绍概念:像这些(课件中圈出来),使方程左右两边相等的未知数的值,
叫“方程的解”;举例:x=3是方程x+3=9的解??
而求方程的解的过程,我们叫“解方程”(板书)
这些知识在数中有介绍,我们找到划一划读一读。(看书)
两个词都有解字,有什么区别呢?(“方程的解”中的“解”是名词,它指能使方程左右两边相等的未知数的值,是一个数值;“解方程”中的“解”是动词,它指求方程解的过程,是一个演算的过程.)
5、验算:
师:刚才我们解出来x的值是不是正确的答案呢?你打算怎么检验?
生:放进去计算一下。
师:大家心里都有了想法,但方程的检验也是有一定格式的,下面我们到书本中来学习一下。 生自学书本后回答:根据等式性质,把x=6代入方程,看方程左右两边是否相等。 生活动:尝试验算一个方程的解,另一个放心里代入验算。
6、小结
师:你学会了吗?你会解怎样的方程了?(含加法或减法)
解方程的步骤?(结合板书和课件)
生:解方程的步骤:
a)先写“解:”。
b)方程左右两边同时加或减一个相同的数,使方程左边只剩x,方程左右两边相等。 c)求出x的值。
d)验算。
练习二:解方程比赛(书p67)
(1)100+x=250(2)x+12=31※(3) x -63=36
练习三:我是小法官:1.x=10是方程5+x=15的解( )。
2.x=10是方程x-5=15的解( )。
3. x=3是方程5x=15的解( )。
4.下面两位同学谁对谁错?
x-1.2=4 x+2.4=4.6
解:x-1.2+1.2=4-1.2=4.6-2.4
x=2.8 =2.2
师:谈谈你觉得解方程过程中有什么要提醒大家注意的?
生:注意等式性质的正确运用!注意解方程时的格式!
练习四:看图列方程并求解
师:我们这节课学习了什么?和大家来分享下!
解方程(含有加法或减法) 等式性质 解:x+3-3 =9-解方程 (过程)学生板演天平贴图
x=6 ?解 (值)检验:方程左边=x+3
=6+3
=9
=方程右边
所以,x=6是方程的解。