当前位置:网站首页 >> 作文 >> 高中数学备课教案设计(3篇)

高中数学备课教案设计(3篇)

格式:DOC 上传日期:2023-03-25 13:37:38
高中数学备课教案设计(3篇)
时间:2023-03-25 13:37:38     小编:zdfb

作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。那么教案应该怎么制定才合适呢?下面是小编为大家带来的优秀教案范文,希望大家可以喜欢。

高中数学备课教案设计篇一

1.知识与技能

(1)掌握画三视图的基本技能

(2)丰富学生的空间想象力

2.过程与方法

主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观

(1)提高学生空间想象力

(2)体会三视图的作用

重点:画出简单组合体的三视图

难点:识别三视图所表示的空间几何体

1.学法:观察、动手实践、讨论、类比

2.教学用具:实物模型、三角板

(一)创设情景,揭开课题

“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

(二)实践动手作图

1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

2.教师引导学生用类比方法画出简单组合体的三视图

(1)画出球放在长方体上的三视图

(2)画出矿泉水瓶(实物放在桌面上)的三视图

学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

3.三视图与几何体之间的相互转化。

(1)投影出示图片(课本p10,图1.2-3)

请同学们思考图中的三视图表示的几何体是什么?

(2)你能画出圆台的三视图吗?

(3)三视图对于认识空间几何体有何作用?你有何体会?

教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

(三)巩固练习

课本p12练习1、2p18习题1.2a组1

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)课外练习

1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

高中数学备课教案设计篇二

知识与技能:了解直线参数方程的条件及参数的意义

过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义

情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

教学重点:曲线参数方程的定义及方法

选择适当的参数写出曲线的参数方程.

启发、诱导发现教学.

(一)、复习引入:

1.写出圆方程的标准式和对应的参数方程。

圆参数方程 (为参数)

(2)圆参数方程为: (为参数)

2.写出椭圆参数方程.

3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程?

(二)、讲解新课:

1、问题的提出:一条直线l的倾斜角是,并且经过点p(2,3),如何描述直线l上任意点的位置呢?

如果已知直线l经过两个

定点q(1,1),p(4,3),

那么又如何描述直线l上任意点的

位置呢?

2、教师引导学生推导直线的参数方程:

(1)过定点倾斜角为的直线的

参数方程

(为参数)

【辨析直线的参数方程】:设m(x,y)为直线上的任意一点,参数t的几何意义是指从点p到点m的位移,可以用有向线段数量来表示。带符号.

(2)、经过两个定点q,p(其中)的直线的参数方程为。其中点m(x,y)为直线上的任意一点。这里参数的几何意义与参数方程(1)中的t显然不同,它所反映的是动点m分有向线段的数量比。当时,m为内分点;当且时,m为外分点;当时,点m与q重合。

(三)、直线的参数方程应用,强化理解。

1、例题:

学生练习,教师准对问题讲评。反思归纳:

1)求直线参数方程的方法;

2)利用直线参数方程求交点。

2、巩固导练:

补充:

1)直线与圆相切,那么直线的倾斜角为(a)

a.或 b.或 c.或 d.或

2)(坐标系与参数方程选做题)若直线与直线(为参数)垂直,则 .

解:直线化为普通方程是,

该直线的斜率为,

直线(为参数)化为普通方程是,

该直线的斜率为,

则由两直线垂直的充要条件,得, 。

(四)、小结:

(1)直线参数方程求法;

(2)直线参数方程的.特点;

(3)根据已知条件和图形的几何性质,注意参数的意义。

(五)、作业:

补充:设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为_______

【考点定位】本小题考查参数方程化为普通方程、两条平行线间的距离,基础题。

解析:由题直线的普通方程为,故它与与的距离为。

五、教学反思:

高中数学备课教案设计篇三

知识与技能:

理解任意角的概念(包括正角、负角、零角)与区间角的概念。

过程与方法:

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

情感态度与价值观:

1、提高学生的推理能力;

2、培养学生应用意识。

教学重点:

任意角概念的理解;区间角的集合的书写。

教学难点:

终边相同角的集合的表示;区间角的集合的书写。

(一)导入新课

1、回顾角的定义

①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

(二)教学新课

1、角的有关概念:

①角的定义:

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

②角的名称:

注意:

⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

⑵零角的终边与始边重合,如果α是零角α =0°;

⑶角的概念经过推广后,已包括正角、负角和零角。

⑤练习:请说出角α、β、γ各是多少度?

2、象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

例1、如图⑴⑵中的角分别属于第几象限角?

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服