人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
六年级数学上册课程篇一
第25~26页,例2、例3及练习四的第3~8题。
1、通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。
2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。
3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。
掌握圆锥体积的计算公式。
正确探索出圆锥体积和圆柱体积之间的关系。
圆锥与等底等高的圆柱,圆锥与不等底等高的圆柱。
一、复习
1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。
二、新课
1、教学圆锥体积的计算公式。
(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的
(2)能不能也通过已学过的图形来求呢?圆锥的体积可能和什么图形的体积有关?圆锥的体积该怎样求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)
(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?
(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)
(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )还可以怎么说?
板书:圆锥的体积=1/3×圆柱的体积=1/3×底面积×高,字母公式:v=1/3sh
拿不等底等高的圆柱与圆锥进行实验。为什么倒3次不能刚好倒,和刚才不一样呢?
强调:“等底等高”。
问:sh表示什么?为什么要乘1/3?
练习:一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?
一个圆锥的体积是15立方厘米,与它等底等高的圆柱的体积是多少?
2、教学练习四第3题
(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?
(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。
说明:不要漏乘1/3,计算时能约分的要先约分。
3、巩固练习:完成练习四第4题。
4、教学例3.
(1)出示例3
已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。
(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)
(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)
(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)
四、巩固练习
1、做练习四的第7题。
学生先独立判断这三句话是否正确,然后全般核对评讲。
2、做练习四的第8题。
(1)引导学生学生思考回答以下问题:
① 这道题已知什么?求什么?
② 求圆锥的体积必须知道什么?
③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量?
(2)让学生做在练习本上,教师巡视,做完后集体订正。
3、做练习四的第6题。
(1)指名学生先后回答下面问题:
① 圆柱的侧面积等于多少?
② 圆柱的表面积的含义是什么?怎样计算?
③ 圆柱体积的计算公式是什么?
④ 圆锥的体积公式是什么?
(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。
五、总结
这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?
六年级数学上册课程篇二
分数乘、除法应用题对比
在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的'联系与区别.
1.进一步加深对分数乘、除法应用题的数量关系和内在联系的认识.明确它们的相同点和不同点.
2.掌握分数乘、除法应用题的分析、解答方法.
训练学生分析分数应用题的数量关系,明确分数乘除法应用题的相同点和不同点.
准确判断单位“1”,正确地解答分数应用题.
一、铺垫孕伏
(一)导入 :我们已经学过了三种分数乘、除法应用题(板书:分数乘、除法应用题),请同学们想一想都是哪三种?解答分数乘、除法应用题的关键是什么?
(二)判断单位“1”.
1.鹅的只数是鸭的 .
2.甲的 是乙.
3.乙是甲的 .
4.男生人数的 相当于女生.
5.小齿轮的齿数占大齿轮的 .
(三)列式计算.
1.4是12的几分之几?
2.12的 是多少?
3.一个数的 是4,求这个数.
二、探究新知
(一)教学例3第(1)题
池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
1.读题并找出已知条件和问题
2.提问:应把谁看作单位“1”?是根据题中哪句话判断的?
3.画图.
4.列式解答
答:鹅的只数是鸭的 .
(二)教学例3第(2)、(3)题.
池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?
池塘里有4只鹅,正好是鸭的只数的 ,池塘里有多少只鸭?
1.画图理解题意
2.列式解答
3.集体订正
(三)小结
这三道题有什么相同点和不同点?解题关键是什么?
1.结构上
相同点:都有3个数量,即鸭的只数,鹅的只数,鹅是鸭的几分之几;
不同点:已知和未知不一样.
2.解题思路上
相同点:都要首先弄清谁作标准,把谁看作单位“1”;
不同点:根据已知、未知的变化,确定不同的解答方法.
解题关键是:正确分析题中的数量关系,明确谁作单位“1”.
教师:分数乘除法应用题,在结构、解题思路及方法上,既有联系又有区别.我们在解
答这类应用题时,一定要认真正确分析题中的数量关系,准确判断谁作单位“1”.这样才能提高解答分数应用题的能力.
三、全课小结
这节课我们进一步学习了分数乘、除法应用题,并进行了比较.解答时,要正确地判断单位“1”,从而确定解答方法.
四、巩固练习
(一)商店运来红毛衣25包,蓝毛衣15包,蓝毛衣的包数是红毛衣的几分之几?
(二)商店运来红毛衣25包,运来蓝毛衣的包数是红毛衣的 .商店运来蓝毛衣多少包?
(三)商店运来蓝毛衣15包,正好是运来红毛衣包数的 .商店运来红毛衣多少包?
五、课后作业
(一)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?
(二)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?
(三)农场有小牛40头,是大牛头数的 .农场有大牛多少头?
六、板书设计
1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
4÷12=
答:鹅的只数是鸭的 .
2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?
12× =4(只)
答:池塘里有4只鹅.
3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?
4÷ =12(只)
答:池塘里有12只鸭.
六年级数学上册课程篇三
比例的意义
比例的意义
使学生理解比例的意义,能应用比例的意判断两个比能否成比例。
比例的意义。
找出相等的比组成比例。
一、旧知铺垫
什么是比?什么叫比值?怎样求比值?
2.求下面各比的比值。
12:16
3/4:1/8
4.5:2.7
二、探索新知
1.教学例1。
(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)
①说一说各幅图的情景。
②图中有什么相同之处?
(2)这几面国旗的形状一样,但长和宽却各不相同。请大家算一算它们长和宽的比,看看能发现什么?
(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?
学生回答教师板书:
60:40=3/2
操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?
学生回答长、宽比值。
2.4:1.6=3/2
两面国旗的长和宽的比值相等。
板书:2.4:1.6=60:40
也可以写成:2.4/1.6.=60/40
(4)找比例。
师:在这四面国旗的尺寸中,你还能找出哪些比可以组成等式?
如:5:10/3=15:10
5:10/3=2.4:1.6
15?10=2.4/1.6
15/10=60/40
(5)什么是比例?
表示两个比相等的式子叫做比例。
(6)1:2是是比例吗?你能把它组成一个比例吗?
(7)完成教材“做一做”。
第1题。
什么样的比可以组成比例?
把组成的比例写出来。
说一说你是怎么找的。
同学之间互相交流,检验各自所写的比例。
第2题。
学生独立写比例,看谁写得多。
同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。
3.课堂小结。
(1)什么叫做比例?
(2)一个比例式可以改写成几个不同的比例式?
三、巩固练习
完成课文练习六第1~3题。
六年级数学上册课程篇四
按比例分配应用题
按比例分配是把一个数量按照一定的比进行分配,它主要有三种不同的解法:一是把比看作分得的份数,用归一法解答;二是把比转化成分数,利用分数乘法的意义来解答;三是用比例的知识来解答。教材展示的是第二种解法,通过例2、例3展示了详细的解题思路。例2是把一个数量按照已知的比分成两部分的问题。例3教学是把一个数量按照已知的比分成三部分的问题。
1.使学生理解按比例分配问题的意义。
2.使学生掌握按比例分配应用题的结构及解答方法。
3.掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。
1.理解按比例分配问题的意义。
2.掌握怎样根据比算出总份数及各部分量占总数量的几分之几的解题方法。
(一)复习准备
1.复习比的有关知识,为学习新知识做准备。
已知六年级1班男生人数和女生人数的比是3∶4。
男生人数与全班人数的比是∶。
女生人数与全班人数的比是∶。
2.创设情境,提出课题。
(1)妈妈有10块糖,平均分给哥哥和弟弟。每人可以得到几块糖?(每人可分到5块糖。)
提问:妈妈是怎样分的?(平均分)
(2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少?(弟弟和哥哥糖数的比是3∶2。)
提问:这样分还是平均分吗?
日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗?好,今天我们继续研究有关分配的问题。
(二)学习新课
1.讲解例2。
例2 一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2。两种作物各播种多少公顷?