当前位置:网站首页 >> 作文 >> 最新人教版一年级数学下册新课标 人教版一年级数学下册课标要求(五篇)

最新人教版一年级数学下册新课标 人教版一年级数学下册课标要求(五篇)

格式:DOC 上传日期:2024-03-20 19:20:50
最新人教版一年级数学下册新课标 人教版一年级数学下册课标要求(五篇)
时间:2024-03-20 19:20:50     小编:zdfb

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧

人教版一年级数学下册新课标 人教版一年级数学下册课标要求篇一

1、通过教学使学生知道储蓄的意义;明确本金、利息、税后利息和利率的含义;掌握计算利息的方法,会进行简单计算。

2、对学生进行勤俭节约,积极参加储蓄;支援国家、灾区、贫困地区建设的思想品德教育。

掌握利息的计算方法。

教学难点:

正确地计算利息,解决利息计算的实际问题。

随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。

1、介绍存款的种类、形式。

存款分为活期、整存整取和零存整取等方式。

2、阅读p99页的内容,自学讨论例题,理解本金、利息、税后利息和利率和含义。(例如:小丽20--年月1月1日把100元钱存入银行,整存整取一年,到20--年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的确1.8元,共101.8元。)

本金:存入银行的钱叫做本金。小丽存入的100元就是本金。

利息:取款时银行多支付的钱叫做利息。

税后利息:国家规定,存款的利息要按20%的税率纳税。小丽实际得到的1.8元是税后利息。国债的利息不纳税。

利率:利息和本金的比值叫做利率。

(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。

(2)阅读p99页表格,了解同一时期各银行的利率是一定的。

3、学会填写存款凭条。

把存款凭条画在黑板上,请学生尝试填写。然后评讲。(要填写的项目:户名、存期、存入金额,、存种、密码、地址等,最后填上日期。

4、利息的计算。

(1)出示利息的计算公式:利息=本金利率时间

(2)计算方法

按照以上的'利率,如果小丽的100元钱存整取三年,到期的利息是多少?学生计算后交流,教师板书:1002.70%3=8.10(元)

(3)三年后取款,小丽能得到8.10元利息吗?为什么?

学生发表意见后,教师指出:1999国家规定存款时,要按利息的确20%缴纳利息税,你能再算一算如果你存入100元,3年后实际能得多少利息吗?

(4)学生计算后回答,教师板书

利息税金:8.1020%=1.62元税后利息:8.10-1.62=6.48元

加上她存入本金100元,到期时她可以实际得到本金和税后利息一共是106.48元。

5、练习。

(1)完成二十三的第6题,学生读题后,提问:贝贝存入的本金是多少?利率是多少?存期是多少?然后由学生解答,集体订正。

(2)完成练习二十三的第9题。

折扣、纳税、利息是百分数在生活中的具体应用,与人们的生活密切相关。其中,折扣是学生们日常生活最熟悉的,教学中,我没有剥夺孩子们想说的权利,让他们自由地来说说他们对折扣的理解,并引入商品打折销售的情境,解决与之相关的实际问题。但教学中我没有说清楚几折就是十分之几,因此个别孩子对于七五折这样的概念还不是很清楚。而纳税和利率,则主要是通过公式的掌握教给孩子解题的方法。

人教版一年级数学下册新课标 人教版一年级数学下册课标要求篇二

1.投影出示复习题.

学校有30张彩色纸,做纸花用去11张,还剩多少张?

2.指名读题,找出题中的条件和问题.

3.学生独立解答,集体订正.

学生思考、回答:这道题要求的“还剩多少张”是干什么用去后剩下的张数?

1.导入新课:前面学习的应用题,都是把复习题的第一个条件改变成两个条件,把一步计算的应用题变为两步计算的应用题.现在,这道应用题前两个条件不变,我们在第二个条件后加上一个条件,看看变成什么样的应用题,该怎样解答.

2.教学例3.

(1)出示例3:学校有30张彩色纸,做纸花用去11张,做小旗用去9张,还剩多少张?

(2)指名读题,找出题中的条件和问题.

(3)初步理解题意:

教师引导学生从条件、问题入手对复习题和例3进行观察、比较、分析.使学生知道:虽然两道题都是求“还剩多少张?”,但复习题给出了两个条件:30张彩色纸、做纸花用去11张,所以求出做完纸花后剩下的张数,也就回答了最后问题,只需一步计算;例3给出了三个条件:30张彩色纸,做纸花用去11张,做小旗用去9张.由此可知,从30张彩色纸中用了两次,求最后剩下的张数,显然不能一步完成,而需计算两步.

(4)画线段图,进一步理解题意.

学生叙述题中的条件和问题,教师画出线段图:

指名看线段图说明题意.

(5)利用线段图,分析题中数量关系,找出中间问题,解答应用题.

学生看图、思考、讨论:从30张彩色纸中,做纸花用去11张,由这两个条件可以算出什么?

通过思考、讨论,使学生知道:由题中的前两个条件,可以求出做完纸花后还有多少张彩色纸.

指名在线段图上指出哪部分表示“做完纸花还有多少张”.教师随即在线段图的对应部分标出:

板书:做完纸花还有多少张?

学生看图思考:根据条件怎样求出做完纸花还有多少张?

指名在线段图上指出第一步是从哪一段里去掉哪一段,剩下的是哪一段.

学生叙述算式及得数,教师板书:30-11=19(张)

引导学生思考:这19张回答的是不是题中的问题?为什么?

通过分析,使学生知道:例3要求的是从总数30张中做纸花、做小旗用去两次后剩下的部分.19张是从30张中用去一次即做纸花后剩下的,它回答的是应用题的中间问题,而不是最后的问题.

学生看图思考:做小旗用的9张彩色纸是从哪部分中用去的?由这两个条件可以求什么?

指名在线段图上指出是从哪一段里去掉哪一段,剩下的是哪一段.

板书:(2)还剩多少张?

学生叙述算式及得数,教师板书:19-9=10(张)

答:还剩10张.

(6)回顾分析、解答例3的过程.

教师以叙述及问答的方式引导学生回忆例3的分析、解答过程.

①读题,找出题中的条件、问题.

指名叙述题中的条件和问题.

②分析题中的条件和问题,看由题中的已知条件能不能一步解答所求问题.

指名回答由例3的已知条件能否一步解答“还剩多少张”,为什么?

③画出线段图,看图分析由前两个条件可以求出什么问题,确定第一步该算什么.

指名叙述例3的前两个条件,回答用前两个条件可以求什么,第一步该算什么.

再分析由第一步的计算结果和第三个条件能木能解答所提问题,确定第二步算什么.

指名叙述例3第二步算什么.

④经过分析,知道先算什么,再算什么,就可以列式解答了.

指名叙述例3第一步、第二步的解答方法.

⑤写出答案,检查解答有没有错误.

教师:解答应用题关键是分析题中的数量关系,在今后的练习中,同学们可以根据题中的条件、问题自己画出线段图,根据直观图示进行分析,确定先算什么,再算什么,最后再解答.

3.完成“做一做”.

幼儿园买来30个梨,给小班12个,给中班9个,还有多少个?

(1)指名读题,找出题中的条件和问题.

随学生叙述,教师在黑板上画出不完整的线段图.

(2)引导学生画出:

①给小班12个后剩下的部分.

②给中班9个后剩下的部分.

一名学生画在黑板上,其余学生画在书上.

(3)学生分析、解答.

(4)指名叙述解题思路.

今天我们学习的是两步计算应用题中,从一个数里连续减去两个数的应用题.

这种应用题有两种解答方法,今天我们学习的是其中的一种,即从总数中减去第一部分,再减去第二部分,下节课我们将学习这种应用题的第二种解法.

随堂练习

1.(1)河边有24只鸭,游走了7只,还剩多少只?

(2)河边有24只鸭,先游走7只,又游走9只,还剩多少只?

引导学生对上述两题进行分析比较:两题的第一个条件相同,即河边有24只鸭,问题相同,都是求还剩多少只.但第1小题的已知条件告诉我们,从24只鸭中游走了一次即7只,求剩下的,可一步解答.第2小题是从24只中游走两次,第一次游走7只,第二次游走9只,求剩下的不能一步解答,必须先求出游走7只后还有多少只.

学生独立解答,集体订正.

2.缝纫组买来35米花布,30米蓝布.做衣服用去59米,还剩多少米?

指名读题,找出题中的条件和问题.

人教版一年级数学下册新课标 人教版一年级数学下册课标要求篇三

1、鼓励学生运用猜测、举例、验证等数学方法学习乘法分配律。

2、在学习的过程中,树立用规律简算,增强用规律验算得意识。

1、体现了“生活中处处有数学”。

2、课堂上灵活处理教材,选择适当的教法。

3、提高了小组的合作学习有效性。

4、促进了学生的主动性、个性化的学习。

教学挂图

出示数学挂图:通过看图,把图意说一说。

弄清题以后,你能提出什么数学问题吗? (小组讨论)

生答师板书:济青高速公路全长约多少千米?怎样解答呢?

(1)要求全长多少千米,可以先求每辆车分别行驶的路程,再求全长的路程。

110 × 2 + 90 × 2 = 220 + 180 = 400 (千米)还可以先求两辆车1小时行驶的路程,再求全长的路程。

(110+90)× 2 = 200 × 2 = 400(千米)

仔细观察,你能发现什么规律? (小组合作探讨)

生交流:发现两个算式的结果相等。 110×2 + 90×2 =(110+90)× 2这是个什么规律呢?让我们来验证一下吧。

(小组合作学习)生自己举例来验证

生答师小结:两个数的和乘一个数,可以把它们分别乘这个数,再把乘得的积相加,这个规律就叫做乘法分配律。你能用字母表示出这个规律吗?

生板书:(a + b).c = a .c + b .c通过学习,让学生思考运用乘法分配律解决实际问题。让学生讨论交流自己的想法:

①可以进行验算。

②可以使计算简便。运用乘法分配律能使计算简便吗? (生小组举例探讨)

自主练习:第一题:让学生在小组中快速连接,并说一说运用了什么运算定律。

第二题:先让生自己解答,然后再组内互相说出师运用的什么定律。

第三题:先观察,再说出对错,然后把错的题重新做出来,集体订正,并说出错题错在哪里。

板书设计:乘法分配律

110×2 + 90×2 (110 + 90)×2 = 220 + 180 = 200×2 = 400(千米) = 400(千米)

两个数的和乘一个数,可以先把它们分别和这个数相乘,再把乘得的积相加,这个规律就叫做乘法的分配律。

( a + b).c = a .c + b .c

人教版一年级数学下册新课标 人教版一年级数学下册课标要求篇四

教学内容:教材p115、116页练习二十四第8-14题,思考题。

1、使学生进一步认识长方形和正方形的特征,进一步加深对周长概念的理解,能正确地判断长方形和正方形,以及指出多边形的周长。

2、学生进一步巩固长方形和正方形的周长计算方法,学会解答比较复杂的求长方形和正方形周长的问题;进一步培养学生的空间观念。

教学具准备:直尺、三角尺、长方形纸片2张、铁丝1根

这节课,练习本单元学习的长方形和正方形的知识。(板书课题)通过练习,要进一步掌握长方形和正方形的特点,更加明确什么是周长,会更加正确地计算长方形和正方形的周长。

1、长方形和正方形的概念

(1)做练习二十四第8题

提问:这是什么图形?(板书:长方形、正方形)每个图形都有几条边?(板书:4条边、4个角)

量一量各个图形中每边的长度。用三角尺的直角比一比每个角。

提问:长方形和正方形的每个角都是什么角?

你能说一说长方形和正方形各有什么特点吗?

它们有什么相同的地方和不同的地方?

(2)判断(出示图形)

哪几个是正方形,哪几个是长方形?

2、周长的概念

(1)什么是周长?(指名回答)

(2)练习二十四第9题。

你能看出第9题里三个图形的周长是多少厘米吗?

学生口答,说出是怎么得到的?

1、练习二十四第10题。

(1)量课本封面的长和宽,取整厘米数。

周长是怎么算的?

(2)先让学生量一量。

正方形的周长应该怎么算?

2、做练习二十四第13题。

(1)做第1题。

(读题)边长是多少?周长怎么算?

(2)做第2题。

(读题)长和宽各是多少?周长怎么算?

3、练习二十四第14题

(1)读题

(2)提问:20厘米其实是围成的长方形或正方形的什么?

(3)小组讨论围法。

人教版一年级数学下册新课标 人教版一年级数学下册课标要求篇五

义务教育教科书《数学》五年级下册第41~42页例9、例10和“练一练’’,第45页练习七第1~2题。

教学目标:

1.使学生理解和认识公因数和最大公因数,能用列举的方法求100以内两个数的.公因数和最大公因数,能通过直观图理解两个数的因数及公因数之间的关系。

2.使学生借助直观认识公因数,理解公因数的特征;通过列举探索求公因数和最大公因数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。

3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心。

求两个数的公因数和最大公因数。

教学难点:

理解求公因数和最大公因数的方法。

小黑板

1.直观演示,作好铺垫。

出示边长6厘米和边长5厘米的两个正方形。

提问:观察这两个正方形,哪一个能正好分成边长都是2厘米的小正方形?

2.引入新课。

谈话:根据上面我们看到的,如果一个长度是原来边长的因数,就能正好全部分割成小正方形。现在就利用这样的认识,学习与因数有密切联系的新内容,认识新知识,学会新方法。

1.认识公因数。

(1)出示例9,了解题意。

启发:观察正方形纸片的边长和长方形的长、宽,哪种纸片能把长方形正好铺满,哪种不能正好铺满?先在小组讨论,说说你的理由。

交流:哪种纸片能把长方形正好铺满,哪种不能?你是怎样想的?

结合交流进行演示,引导观察用正方形纸片铺的结果,理解边长6是长方形两边12和18的因数,能正好铺满;(板书:12÷6=2 18÷6=3)边长4是12的因数,但不是18的因数,就不能正好铺满。(板书:12÷4=3 18÷4=4......2)

(2)启发:想一想,还有哪些边长是整厘米数的正方形,也能把这个长方形正好铺满?为什么?先独立思考,再和同桌说一说,并说说你的理由。

交流:还有哪些边长整厘米数的正方形也能正好铺满?你是怎样想的?你发现正方形边长的厘米数符合什么条件,就能把这个长方形正好铺满?

(3)引导:现在你发现,哪些数既是12的因数,又是18的因数?

指出:大家发现,1、2、3、6这几个数,既是12的因数,又是18的因数,也就是12和18公有的因数,我们称它们是1 2和18的公因数。(板书)

追问:4是1 2和18的公因数吗?为什么不是?

2.求公因数。

(1)出示问题。

引导:我们已经知道,两个数公有的因数,是它们的公因数。那如果已知两个数,你能不能找出它们所有的公因数呢?接着看一个问题。

出示例10,让学生明确要找出8和1 2的所有公因数,并找出其中最大的一个。

(2)探索方法。

引导:先想想怎样的数是8和12的公因数;再想怎样可以找到8和12的公因数。和同桌商量商量,找出它们的公因数,并找出最大的一个。

学生思考、尝试,教师巡视、指导。

交流:你是怎样找8和12的公因数和最大的公因数的?

结合交流,引导学生理解不同思考方法:(在交流中板书过程)

①分别找出8和12的因数,再找公因数,并确定最大的一个。

②先找出8的因数,再从8的因数里找1 2的因数,并确定最大的一个。提问:为什么可以这样找8和12的公因数?

③先找1 2的因数,再从1 2的因数里找8的因数,并确定最大的一个。追问:这种方法是怎样想的?

小结

3.用集合图表示公因数。

出示两个圈:8的因数12的因数(图略)让学生分别说出8和12的因数,教师板书。

引导:如果要在图里既看出8的因数和12的因数,又能把公有的因数写在共同的部分,这两个圈怎样合并到一起比较合适?小组里讨论讨论。

4.回顾内容。

提问:回顾今天的学习,我们认识了哪些内容?(板书课题)什么是公因数和最大公因数?

1.做“练一练”第1题。

2.做“练一练”第2题。

3.做练习七第1题。

学生练习,指名板演。检查板演过程,说明最大公因数;有错订正。

4.做练习七第2题。让学生直接写出得数。

提问:能根据算式说说哪个数是哪个数的因数或倍数吗?

提问:今天这节课你收获了什么?在学习过程中你还有哪些体会?<

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服