当前位置:网站首页 >> 作文 >> 三角形内角和课堂总结(15篇)

三角形内角和课堂总结(15篇)

格式:DOC 上传日期:2023-03-23 13:07:03
三角形内角和课堂总结(15篇)
时间:2023-03-23 13:07:03     小编:zxfb

总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,因此,让我们写一份总结吧。怎样写总结才更能起到其作用呢?总结应该怎么写呢?那么下面我就给大家讲一讲总结怎么写才比较好,我们一起来看一看吧。

三角形内角和课堂总结篇一

1、为学生营造了探究的情境。

在数学教学中,教师应提供给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。教学中,我在引出课题后,引导学生自己提出问题并理解内角与内角和的概念。在学生猜测的基础上,再引导学生通过探究活动来验证自己的观点是否正确。当学生有困难时,教师也参与学生的研究,适当进行点拨。并充分进行交流反馈。给学生创造了一个宽松和谐的探究氛围。

2、充分调动各种感官动手操作,享受数学学习的快乐。

在验证三角形的内角和是180度的过程当中,大部份同学都是用度量的方法,此时,我引导学生:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示,出现了很多种方法,有的是把三个角剪下来拼成一个平角。有的用两个大小相等的直角三角形拼成一个正方形,还有的是用折纸的方法,极大地调动了大脑,就连平时对数学不感兴趣的学生也置身其中。充分让学生进行动手操作,享受数学学习的乐趣。

一、教学现状的思考。

我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

1、通过量一量算一算拼一拼折一折的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。

2、通过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想。

3、通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。

(三)教学重,难点

因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是“内角”的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。

二,说教法,学法。

本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。

因为《课程标准》明确指出:“要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力”。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从“猜测――验证”展开学习活动,让学生感受这种重要的数学思维方式。

三,说教学过程

我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。

(一)引入

呈现情境:出示多个已学的平面图形,让学生认识什么是“内角”。( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题。

【设计意图】让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的“横空出。

(二)猜测

提出问题:长方形内角和是360°,那么三角形内角和是多少呢?

【设计意图】引导学生提出合理猜测:三角形的内角和是180°。

(三)验证

(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度?

(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。

(3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。

(4)画:根据长方形的内角和来验证三角形内角和是180°。

一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。

【设计意图】利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥。

(四)深化

质疑: 大小不同的三角形, 它们的内角和会是一样吗?

观察指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变。

结论: 角的两条边长了, 但角的大小不变。因为角的大小与边的长短无关。

实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小。这样多次变化, 活动角越来越大, 而另外两个角越来越小。最后, 当活动角的两条边与小棒重合时。

结论:活动角就是一个平角180°, 另外两个角都是0°。

【设计意图】小学生由于年龄小, 容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用”角的大小与边的长短无关“的旧知识来理解说明。

对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因。

(五)应用

1、基础练习:书本练习十四的习题9,求出三角形各个角的度数。

2、变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗?

(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少?

(2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少?

4、智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题。

【设计意图】习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。

第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。

第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。

第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。

第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。

能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。

三角形内角和课堂总结篇二

“合作探究,实验论证”生动地诠释了新教育的基本理念,本课新知识传授很好的把握三个环节。

一是学生独立思考,教师引导学生讨论验证方法,掌握要领。上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角的和是多少?初步让学生感知直角三角形的内角和是180,然后质疑:,这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180°呢?这个问题一提出去就激发学生的探究学习的热情。因此接着就让学生讨论:有什么办法可以验证得出这样的结论。学生提出度量、折一折、拼一拼等方法。

二是动手操作验证猜想。让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法或者用折一折的方法或者拼一拼的方法等等,通过小组合作交流,印证猜想,得出任意三角形的内角和是180°的结论。

三是进行总结强化了学生对结论的理解与记忆,激发学生探索知识的热情。科学验证了结果,让学生用简洁的语言总结结论:三角形的内角和是180°。

《三角形的内角和》是九年制义务教育人教版四年级下册第五章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一些活动得出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、猜测、实验,总结。逐步培养学生的.逻辑推理能力。

“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。

本课的重点就是要让学生知道“知其然还要知其所以然”,所以在第二环节里。鼓励学生亲自动手操作验证猜想。为此,我设计了大量的操作活动:画一画、量一量、剪一剪、折一折、拼一拼、撕一撕等,我没有限定了具体的操作环节,但为了节省时间,让学生分组活动,感觉更利于我的目标落实。但在分组活动中,我更注意解决学生活动中遇到了问题的解决,比如说画,老师走入学生中指导要领,因此学生交上来画的作品也非常的漂亮。

学生观察能力得到了培养。再比如说折,有的学生就是折不好,因为那第一折有一定的难度,它不仅要顶点和边的重合,其实还要折痕和边的平行,这个认识并不是每个学生都能达到的。教师也要走上前去点拨一下。

再比如撕,如果事先没有标好具体的角,撕后就找不到要拼的角了……所以在限定的操作活动中,既体现了老师的“扶”又体现了老师的“放”。做到了“扶”而不死,“伴”而有度,“放”而不乱。我还制作了动画课件,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。在此环节增加了学生的合作探究精神培养。在归纳总结环节,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力。

最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,我除了设计了一些基本的已知三角形二个内角求第三个角的练习题外,还设计了几道习题,第一道是已知一个三角形有二个锐角,你能判断出是什么三角形吗?通过这一问题的思考,使学生明白,任意三角形都有二个锐角,因此直角三角形的定义是有一个角是直角的三角形叫直角三角形;钝角三角形的定义是有一个钝角的三角形叫钝角三角形;而锐角三角形则必须是三个角都是锐角的三角形才是锐角三角形的道理。这道题有助于帮助学生解决三角形按角分的定义的理解。

第二道题是一个三角形最大角是60°,它是什么三角形?通过对此题的研究,使学生发现判断是什么三角形主要看最大角的大小,如果最大角是锐角,也可以判断是锐角三角形。同时加深了学生对等边三角形的特点的认识和理解。第三题我拓展延伸到三角形外角,第四题我设计了多边形的内角和的探究。

三角形内角和课堂总结篇三

《三角形内角和》

这节课中,我本着以学生的发展为本的教学理念,让学生主动探索,互动学习,充分运用教、学具,让学生动手操作,展示知识的形成,发展和应用的全过程。

一、创设问题情境,让学生主动参与

《数学课程标准》指出:"学生的数学学习内容应当是现实的,有意义富有挑战性的,这些内容主要有利于学生主动地进行观察、猜测、验证、交流等数学活动。”上课开始,我就讲故事的情景引入,提出:拿的是有原来一个角的那块玻璃还是有原来两个角的那块玻璃?他们之间到底有着怎样的关系?等问题,富有挑战性,充满了浓浓的吸引力,激发了学生主动学习欲望,学生有了学习动力,从而提高学习效率。

二、经历探究过程,/xdth/jxfs/谢谢您的支持和鼓励!

《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖与记忆,动手实践自主探索和合作交流是学生学习数学的重要方式”。要让学生逐步探究发现三角形三个内角的和是180°。本节课我安排了两个环节:先让学生画一画:锐角三角形、直角三角形、钝角三角形;量一量:锐角三角形、直角三角形、钝角三角形,谁的内角和大?算一算:三角形三个内角的和各是多少度。生汇报:锐角三角形是180°;直角三角形是180°度;钝角三角形是180°,比较是不是各种形状、大小不同的三角形内角和都是180°呢?比较发现三角形的三个内角和大约是180°。再让学生把三角形的三个内角分别剪下来,再拼一拼或折一折。发现三个角可以拼(折)成一个平角,学生从已有的知识出发,从而推理出三角形的内角和是180°。让学生在自主探究,合作交流中经历,猜想、验证、结论这一个过程,体验探究学习的乐趣。

三、注重练习设计,把课堂向生活延伸

练习的设计注意了梯度,既有基本练习,也有发展性练习。尽量体现因材施教,让每一位学生都有收获,体验成功的喜悦。第一个练习用水果宝宝来遮住三角形其中一个角求出这个角的度数。学生根据三角形的内角和180°很快就求出了被遮住的角度数。第二个练习是在第一个练习题的基础上增加难度,也是利用三角形内角和180°求出其它两个角的度数。在题型上有一定的难度。学生必须根据已有的知识推理出图形中没有直接告诉我们的角的度数,再利用三角形内角和是180°性质来求其余角的度数。第三个练习题是学生比较喜欢的“问不倒热线”电话互动的形式,有新意,使学生在前两题的基础上来解决的:一个三角形中最多有几个直角;有几个钝角;至少有几个锐角?为什么?练习不光注意了形势变化,更注意了练习坡度。使学生的思维得到了提高,课堂气氛活跃,学生在交流切磋中迸发出思维的火花。

这样,不仅让学生认识到数学就在我们身边,生活中处处有数学,而且让学生体会到数学知识也是可以延伸运用到生活中去,促进学生的自主发展。

三角形内角和课堂总结篇四

(课件展示记录表)

学生分小组每人任意画一个三角形,小组保证三种类型的三角形都有。

量出三角形每个内角的度数,再把他们加起来填到小组活动记录表中。

指名汇报各组度量和计算内角和的结果(讲明是哪种三角形)

观察:从大家量、算的结果中,你发现什么?

得出三角形的内角和有等于180度的,也有接近180度的。

问:180度的角是一个什么角?(平角)

有什么特点?

师:除了量算法,刚才有些同学还提出了撕拼法,折拼法。

(2)撕拼法

由学生独立尝试撕拼法。(让学生把角标上∠1, ∠2, ∠3)

指名到前面演示汇报:三个内角拼在一起正好能拼成一个平角。

课件展示撕拼法。

把三角形的3个内角撕下来,拼成一个大角。得出结论:三角形的内角和是180度。

(3)折拼法

学生尝试折拼法。

指名演示。

把三个内角折叠后拼在一起,(如果学生操作有困难,可以提示学生要点:顶角向下折,折痕要与底边平行,顶点与底边重合,再把剩下的两个角向这个点对折)

课件再展示。

引导学生说出结论:三个内角拼在一起也能正好拼成一个平角(180度)。

小结:刚才同学们通过撕拼法、折拼法得出,无论是什么样的三角形的内角和都是1800,那我有些不明白,为什么量算法得出的三角形内角和有时不是正好是180度呢?(测量时有误差)

(板书)三角形的内角和=180?/p>

三、介绍数学家帕斯卡

早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180?他就是法国数学家、物理学家帕斯卡,在今后学习的知识中,也有很多事帕斯卡发现和验证的。

四、实践应用

我们就用三角形的内角和是180度这个结论来解决问题

1. 看图求出未知角的度数。(知道两个角度数,求第三个角的度数。)课本28页第3题

2、判断(请大家用手语来判断)

(1)一个三角形的三个内角度数是:80?、75?、24?。 ( )

(2)大三角形比小三角形的内角和大。 ( )

(3)两个小三角形拼成一个大三角形,大三角形的内角和是360?( )

(4)一个钝角三角形中两个锐角的和大于90度。 ( )

(5)直角三角形的两个锐角的和等于90度。 ( )

3、29页第三题

五:小结

通过今天的学习,你有什么收获?学生自由发言。

能不能画一个有两个直角的三角形?

数学里面有着无穷的奥秘,也有很多未发现的规律,等着同学们去探究、发现。

六、板书:

三角形内角和

三角形的内角和=180度

三角形内角和课堂总结篇五

《三角形的内角和》数学教学设计

教材分析

教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和的性质。

三角形的内角和为何等于180度?小学阶段如何比较严密的验证这个性质,培养学生科学的数学素养,是这节课的重难点。在学生明确了“内角“的.含义后,通过学生的大胆猜想,从而引导学生探索三角形内角和等于多少度。大多数学生会想到测量的方法,但这只是一种不完全归纳法,还不能严密的证明。还可以引导学生想到将3个角转换成平角(180度)的方法,即撕角和拼角的方法,这也为今后在初中学习内角和的证明做知识储备。教师还可以在此基础上,再加上1—2种形象的证明方式,如:利用“极限”思想和转动角的方式。就是想让更多的学生感觉到,三个内角的和是180°的可能性很大,拓宽学生思路,并培养学生的空间想象能力。

学情分析

四年级是发展学生逻辑思维能力的黄金时期,如何才能完整、严密的进行数学思考,培养推理能力,是我本节课关注的重点之一。对于“三角形的内角和等于180度”这个性质,有很多学生已经知道,但却是“知其然不知其所以然”。应在学生的学习基础上设置更高的目标,重视猜想与验证、培养学生事实求是的科学态度,学生对于验证的方式和方法,老师要做到适当点拨,及时鼓励。

教学目标

1、学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180度,会应用这一规律进行计算。

2、通过动手操作,找到规律,并能灵活运用。

3、培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。

教学重点和难点

教学重点:学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180度。

教学难点:会应用这一规律进行计算。

三角形内角和课堂总结篇六

教学内容:

义务教育课程标准实验教科书__版小学数学四年级下册第42~46页

教学目标:

1、通过量、剪、拼、折等数学活动,让学生亲自实践操作,发现规律,主动推导并得出“三角形内角和是180°”的结论,会应用这一规律进行计算。

2、在操作、验证三角形内角和的过程中,体验解决问题方法的多样性,发展空间观念,提高初步的逻辑思维能力。

教学过程:

一、创设情境,导入新课

1、谈话:我们已经认识了三角形,你知道哪些关于三角形的知识?

2、我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?我们一起去看看吧!

播放课件

详细内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是的。”一个小的锐角三角形很委屈的样子说:“是这样吗?”(它们在争论谁的内角和大。)

你知道什么是三角形的内角和吗?

通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。

3、故事中到底谁说得对呢?今天我们就来研究三角形的内角和。

【设计意图】从学生的心理、兴趣和意愿为出发点,利用故事的形式提出疑问,激发学生的学习兴趣,提高学生探索的积极性。

二、自主探究、发现规律

1、探究三角形内角和的特点

(1)量一量

师:你认为怎样能知道三角形的内角和?

生:把三角形的三个内角分别量出来,再用加法算出三角形的内角和。

学生活动(小组合作---每组准备三种不同的三角形)量角,求和,完成第43页的表格。

学生交流汇报测量结果。

师:从刚才的交流中,你发现了什么?

生:不管是锐角三角形、直角三角形还是钝角三角形,内角和都是180°。

(在量的过程中,由于误差,有的学生可能算出内角和在180°左右,这时教师要相机诱导:在测量的过程中出现一些误差是正常的,因为同学们画的角不够标准,量角器的不同,还有本身测量的原因都可能导致误差。)

师:看来量一量会出现误差,那么你还有其它的更科学的办法进行验证吗?

(2)拼一拼

学生分小组活动,教师参与学生的活动,并给予必要的指导。

学生展示交流,师:从大家的交流中,我们发现都可以把三角形的三个内角拼成一个平角,证明“三角形内角和是180°” 。

(3)折一折

小组活动,学生交流

生1:将正方形(或长方形)纸沿对角线对折,这样,就折成了两个大小一样的三角形。因为正方形(或长方形)的四个直角的和是360°,所以三角形的内角和就是它的一半,是180°。

生2:直角三角形的两个锐角可以折成一个直角,也就是说,在直角三角形中,两个锐角的和是90°,因此三角形内角和就是180°。

2、归纳

师:通过刚才的活动,我们得出了什么结论?

生:三角形的内角和等于180°。

3、师谈话:三个三角形争论的问题现在能解决了吗?你现在想对这三个三角形说点什么?

学生畅所欲言,对得出的规律做系统的整理。

【设计意图】动手实践,自主探索,亲身体验,是学习数学的重要方式。学生分组合作,量一量、拼一拼、折一折,通过多种感官参与比较、分析从而自主探索得出结论,得到的不仅是三角形内角和的知识,也使学生学到了怎样由已知探索未知的思维方式与方法,培养了他们主动探索的精神。

三、灵活运用,巩固练习

师:好,大家已经发现了“三角形内角和是180°”这一规律,你能应用这个规律解决一些实际的问题吗?

1、判断

钝角三角形比锐角三角形的内角和大。 ( )

锐角三角形的两个内角和小于90°。 ( )

一个三角形最少有两个锐角。 ( )

一个钝角三角形最少有一个钝角。 ( )

学生判断并说出理由。

2、自主练习第6题

练习时,先让学生独立填空,再说说自己是怎么想的,然后用量角器验证计算的结果。

小结:以后如果遇到求一个三角形内未知角的度数时,我们可以用计算的方法算一算,简单又精确。

3、游戏: 选度数,组三角形

(课件显示如下)

请选出三个角的度数来组成一个三角形

10° 18° 15° 150° 130° 72°

20° 50° 70° 35° 75°

52° 56° 54° 58° 60°

学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180°,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,并说出理由。

[设计意图]用已学到的新知解决实际数学问题,认识学数学的价值,再次体验成功,增强学习数学的兴趣。尤其是第三个练习,依据学生的年龄特征和认知水平,设计探索性和开放性的问题,注重拓宽学生的思维活动空间。

四、课堂总结、深化认识

谈话:这节课你学会了什么?解决了什么问题?是怎样解决的?

【设计意图】不仅从知识方面进行总结,还引导学生回顾发现问题、提出问题、解决问题的过程,关注学生学习过程中的情感体验。既让学生习得一种学习方法,又培养了学习兴趣。

课后反思:

本节课学生以小组为单位进行合作学习,从自己的已有经验出发,积极地进行操作、测量、计算,并对自己的结论进行思考、分析。在充分发挥学生主体作用,放手让学生开展探究的同时,教师也恰到好处的发挥了引导作用。整个探究过程学生是自主的、有积极性的,在获得数学结论的同时学习了科学探究的方法,为今后的学习打下了坚实的基础。

三角形内角和课堂总结篇七

复习目标:

1.巩固掌握三角形的特性,三角形任意两边之和大于第三边以及三角形的内角和是180º。

2.知道锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形的特点并能够辨认和区别它们。

复习过程:

一、复习三角形的特点、特性、分类、内角和

1、说一说三角形的特点

2、作锐角三角形、直角三角形、钝角三角形的高和底。谈谈注意什么问题?(强调钝角三角形高的画法)

3、三角形的稳定性。(说说生活中很多事物都用到三角形的原因是什么?)

4、给出三根小棒说说可不可以组成三角形?并说出为什么?

3.4.5 3.3.3 2.2.6 3.3.5

5、三角形的分类:注意三角形各自之间的联系及个三角形的特点。

二:解决问题

1、求三角形各个角的度数。

1)三边相等

2)等腰三角形,顶角是50度

3)有一个锐角50度,是直角三角形

(根据题目所给条件——分析——解决——汇报解题思路)

2、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是75度,顶角是多少?

观察找信息——分析——解决

3、长方形和正方形的内角和各是多少度?

三:提高题

1、能画出有两个直角或者两个钝角的三角形吗?为什么?

2、根据三角形的内角和是180度,能求出下面的四边形和正六边形的内角和吗?

四、指导学生完成课本p127 8

五、课堂小结

六、作业: p130-131第10—12题

三角形内角和课堂总结篇八

学习目标:

1.通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

2.知道三角形两个角的度数,能求出第三个角的度数。 3.发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思想方法。

4.能应用三角形内角和的性质解决一些简单的问题。

教具、学具准备:

课件、学生准备直角三角形、锐角三角形和钝角三角形各一个,并分别测量出每个内角的角度,标在图中 ;一副三角板。

教具、学具准备:课件、学生准备直角三角形、锐角三角形和钝角三角形各一个、一副三角板、磁铁若干。

教学过程:

一、谈话导入

猜谜语:形状似座山,稳定性能坚

三竿首尾连,学问不简单

(打一几何图形) 师:最近我们一直在研究关于三角形的知识,谁能给大家介绍一下?(学生讲学过的三角形知识。)

师:就这么简单的一个三角形我们就得出了那么多的知识,你们

说数学知识神气不神奇?

今天我们还要继续研究三角形的新知识。

二、创设情境,引出课题,以疑激思

师:什么是三角形的内角? 三角形有几个内角? 生:就是三角形内的三个角。每个三角形都有三个内角。 师:这个同学说得很好,三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角。

师:有两个三角形为了一件事正在争论,我们来帮帮他们。(播放课件)

师:同学们,请你们给评评理:是这样吗? 生1:我认为是这样的,因为大三角形大,它的三个内角的和就大。

生2:我不同意,我认为两个三角形的三个内角和的度数都是一样的。

生3:当然是大三角形的内角和大了。

生4:我同意第二个同学的意见,两个三角形的内角和一样大。 师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?这节课我们就一起来研究这个问题。 (板书课题:

三角形的内角和)

三、动手操作,探究问题,以动启思

1、师拿出两个三角板,问:它们是什么三角形? 生:直角三角形。

师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。

(学生们能够很快求出每块三角尺的3个角的和都是180°) 师:其他三角形的内角和也是180°吗? 生a:其他三角形的内角和也是180° 生b:其他三角形的内角和不是180° 生c:不一定

2、小组合作探究:

师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考想一想,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。

(1)、小组合作

,讨论验证方法 (2)汇报验证方法、结果

师:谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎

样?

方法一:

生a:我们小组是用剪拼的方法,将三角形的三个角撕下来,拼成一个平角,得到三角形的内角和是180度。

师:上来展示给大家瞧一瞧。你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。

师:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。你们看成功了,3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?请同学们进行剪拼,看是否能拼成一个平角。(学生操作)

生:不管什么三角形三个角都能拼成一个平角。

师:刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?真会动脑筋,不用工具也行,那我们把掌声送给刚才这个小组。

方法二:

生b:我们小组是用折的方法,同样得到三角形的内角和是180度。

师:请这位同学折来给大家看看。

生:3个角折成了一个平角。

师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(汇报其它三角形折的情况)

师:说得真清楚。

方法三:

学生c:测量角的度数,再加起来。(填表)

师:这位同学测量的是锐角(钝角)三角形,下面就请同学们另选一个三角形求出它的内角和。(汇报:填写结果)

问:你们发现了什么?

小结:通过测量我们发现每个三角形的三个内角和都在180度左右。

师:三角形的内角和就是180度,只是因为我们在测量时会出现一些误差,所以测量出的结果不是很准确。

3、小结:

师:刚才同学们用量、拼、折等方法证明了无论是什么样的三角形内角和都是1800,(板书:是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。

(出示大小不等的三角形判断内角和,判断前面两个三角形的对话,得出大三角形的说法是不对的。)

四、自主练习,解决问题:

师:学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)

1、第一关:下面每组中哪三个角能围成一个三角形? (1)70。

60。

30。

90。

(2)42。

54。

58。

80。

2、第二关:庐山真面目:求三角形中一个未知角的度数。

3、第三关:解决生活实际问题。

(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?

(2)交通警示牌“让”为等边三角形,求其中一个角的度数。

4、第四关:变变变(拓展练习)

利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)

师:小组的同学讨论一下,看谁能找到最佳方法。 学生汇报,在图中画上虚线,教师课件演示。

五、课堂总结

帕斯卡法是国着名的数学家、物理学家、哲学家、科学家 ,他12岁发现“任何三角形的三个内角和是1800!

帕斯卡小的时候身体不太强壮,而父亲又认为数学对小孩子有害

且很伤脑筋,所以不敢让他接触到数学。在十二岁的时候,偶然看到父亲在读几何书。他好奇的问几何学是什么?父亲为了不想让他知道太多,只讲几何学的用处就是教人画图时能作出正确又美观的图。父亲很小心的把自己的数学书都收藏好,怕被帕斯卡擅自翻动。可是却引起了巴斯卡的兴趣,他根据父亲讲的一些简单的几何知识,自己独立研究起来。当他把发现:“任何三角形的三个内角和是一百八十度”的结果告诉他父亲时,父亲是惊喜交集,竟然哭了起来。父亲于是搬出了欧几里得的“几何原理”给巴斯卡看。巴斯卡才开始接触到数学书籍。

帕斯卡12岁发现此结论,我们同学10岁就发现了。所以只要善于用眼睛观察,动脑思考,相信未来的数学家、物理学家、科学家就在你们中间!

三角形内角和课堂总结篇九

四年级数学三角形内角和教学设计

【教学目标】

1、利用电子白板,借助生活情景,通过“量一量”,“算一算”,“拼一拼”,“折一折”的方法,推想归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。

2、经历猜测——验证——得出结论——解释与应用的过程,体验“归纳”、“转化”等数学思想方法。

3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。

【教学重、难点】

教学重点:引导学生发现三角形内角和是180°。    教学难点:用不同方法验证三角形的内角和是180°。

【教学过程】

一、创设情景,提出问题

小游戏:猜一猜藏在信封后面的是什么三角形。(课件出示)

师:三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。

【设计意图】运用电子白板,游戏引入,激起学生对于三角形已有知识的回忆,为下面探求新的知识作好铺垫。创设疑问,引出要探讨的问题,调动学生学习的兴趣。

二、动手实践、自主探究

师:什么是内角?内角和是什么意思?三角形的内角和是多少度呢?

1.从特殊入手——计算直角三角板的内角和。

(1)师生拿出30度直角三角板

师:这是什么?是什么三角形?这个角是多少度?它的内角和是多少度,请口算?

(2)再拿出45度直角三角板。

师:这是什么三角形?这个角是多少度?它的内角和是多少度?

(3)师:通过刚才的计算,你有什么发现?

生:这两个三角形内角和都是180°。

【设计意图】这一环节先让学生在明确三角形内角和的概念基础上,先借助电子白板出示特殊三角形——“直角三角形”,让学生初步感知三角形的内角和,通过计算学生很容易发现直角三角形的内角和是180度,为学生作进一步猜想奠定理论基础。

2、由特殊到一般——猜想验证,发现规律。

(1)提出猜想

师:其他所有三角形的内角和是否也是180°?

生:是、 不是……

师:有的说是,有的说不是,我们的猜想对不对呢,需要验证。

(课件出示小组调查表。)

(2)验证猜想(生测量计算,师巡视指导,收集回报的素材)

师:哪个小组愿意将您们组的发现与大家分享一下?

生上台展示:我们小组研究的是直角三角形(锐角三角形、钝角三角形),我们测量它的三个角分别是  度  度  度,内角和是180°,我们发现直角三角形(锐角三角形、钝角三角形)的内角和是180°)

师:研究锐角三角形(锐角三角形、钝角三角形)的小组请举手,你们的结论和他们一样吗?请你们小组来谈谈你们的发现!

【设计意图】实物投影仪在这个环节发挥了重要的作用,学生充分展示自己的想法。在初步感知的基础上,教师让学生猜测是否所有的三角形的内角和都一样呢?这个问题为后面的猜测和验证进行铺垫,引发思考,激发学习兴趣。然后再通过算出特殊的三角形的内角和推广到猜测所有三角形的内角和,引导学生从特殊三角形过渡到一般三角形的验证规律。

(3)揭示规律

师:通过计算我们发现直角三角形的内角和是180°,锐角三角形的内角和是——180度,钝角三角形的内角和也是——180度,这就验证了我们的猜想。现在我们可以说所有的三角形的内角和是(完善课题180°)。

注:学生的汇报中可能会出现答案不是唯一的情况,如:180°、179°、181°等。(板书)(分别对这几个数进行统计)

师:观察这些测量结果你能发现什么?(三角形内角和大约是180°左右)

(4)方法提升。

师:我们从直角三角形——锐角三角形——钝角三角形——推出所有三角形的内角和,这种由个别到一般的推理方法,在数学上叫归纳推理(板书)归纳推理是重要的推理方法。

【设计意图】通过度量、比较这一活动,让学生在实践中充分感知三角形的内角和大小。但由于测量本身有差异,教师并没有直接告知三角形内角和的结论,而是让学生去另辟蹊径想办法验证前面的猜想,想一想有没有别的方法来求三角形的内角和,让思维真正“展翅高飞”,充分调动学生学习的积极性、自主性。

3、剪拼法再次验证——转化思想的运用。

师:刚才我们通过测量发现了三角形的内角和是180°,现在我们不用量角器测量了,你能想办法证明三角形的内角和是180°吗?先思考再动手做。

生探究,师巡视指导,收集汇报素材。(呈现作品——说方法——统计点评)

班内交流,汇报撕拼法、折叠法。

师:将三角形的内角通过剪拼、折叠,转化成平角,你们应用了一种重要的数学思想——转化(板书),转化就是将我们不会直接解决的新问题,变成已会的旧知识,进而解决。

【设计意图】孩子的智慧来自于动手,电子白板适时演示,让学生通过“剪一剪,拼一拼,折一折”等操作方法,猜想、验证得出结论:三角形的内角和是180°,并利用语言概括出结论,提高语言表达能力。

4.课件展示——再次强化。

师:现在大家知道这几个三角形的内角和是多少度吗?

师:我们可以请电脑来给我们验证一下。

(引入白板,通过拖动演示三角形从小到大度数的不断变化)

结论:不论三角形的大小、形状怎样变化,任何三角形的内角和都是180°。

【设计意图】让学生在白板上亲眼观看到拖拉出类别不同的三角形,让学生在拖动的过程中观察、体验。学生兴趣盎然,学习气氛热烈,学生不仅感受到这3个三角形的内角和是180°,还随着电子白板上这个三角形的任意拖动,发现三角形的3个角的度数在不断的变化,而三角形的内角和则始终没有变化,仍然是180°,深刻地理解了任意三角形的内角和都是180°。而这,恰恰就是本课的教学重点和难点。传统课中不容易突破的教学重难点轻而易举的攻破。抽象的知识变得直观、具体,促进学生知识内化的过程。

三、巩固应用,内化提高

1.介绍科学家帕斯卡(白板出示帕斯卡的资料)

2.练习

(1). 做一做:在一个三角形中,∠1=140度, ∠3=25度,求∠2的度数。

(2). 求出下列三角形中各个角的度数。(书88页第9题)

(3). 算一算(书88页第10题):爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?

【设计意图】练习中使用白板的交互性,学生更愿意参与,得出结果也更有成就感。素质教育要求我们要面向全体学生。为此,根据问题的不同难度,教学时兼顾到不同层次的学生,使每位学生都有所收获,都有机会体会到成功的喜悦。设计练习有新意,同时也注意了坡度。既有基本练习,也有发展性练习,尽最大努力体现因材施教。

四、课后思考、拓展延伸

同学们,数学奥妙无穷,三角形是边数最少的封闭平面图形,那么,四边形五边形六边形(课件出图示)……的内角和是多少度,他们又有什么规律呢?有兴趣的同学下课之后可继续研究,下课。

三角形内角和课堂总结篇十

教学目标:

1、教会学生主动探究新识的方法,学会运用转化迁移数学思想。

2、学生通过量、剪、拼、摆、分割等验证三角形内角和方法的比较,主动掌握三角形内角和是1800,并运用所学知识解决简单的实际问题,发展学生的观察、归纳、概括能力和初步的空间想象力。

教学重点:理解并掌握三角形的内角和是180°。

教学难点:验证所有三角形的内角之和都是180°。

教具准备:多媒体课件。

学具准备:量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)

教学过程:

一、导入

师:知道今天我们学习什么内容吗?我们先来解读一下课题,三角形,你手中有么?举起来我看看,你拿的什么三角形?你呢?师:三角形按角分类,可分为直角三角形、钝角三角形和锐角三角形。

师:什么是内角?你能把你手中三角形的三个内角用角1、角2、角3标出来吗?

师:还有一个关键字“和”,什么是三角形的内角和?

师:你认为三角形的内角和是多少度?你呢?都知道啊?是多少度啊?看来都知道了,就不用再学了吧?你还想学什么?

师:看来我们不仅要知道三角形的内角和是180度,还要亲自证明一下为什么是180度。这才真了不起呢。能证明吗?你想怎么证明阿?

生:量一量的方法。

师:光量就知道了?还要算一算。

师:这种方法可行吗?下面咱就来试试,请同学们4人一组,分工合作,先测量内角,再计算求和。小组长把计算的过程记录下来。开始吧。

验证:量角、求和

小组汇报

生一:我们组量的是锐角三角形,三个角分别是50度、60度、70度,锐角三角形的内角和是180度。

生二:我们组量的是直角三角形,三个角分别是90度、35度、55度,直角三角形的内角和是180度。

生三:我们组量的是钝角三角形,三个角分别是120度、40度、20度,钝角三角形的内角和是180度。

师:从刚才的交流中,你发现了什么?

生:不管是锐角三角形、直角三角形,还是钝角三角形,内角和都是180度。

师:下面同学测量得出180度的请你举手,有没有不是180度的?为什么有不同的答案呢?反思一下。我们在测量的时候容易出现误差,得出的结论就难以让人信服。看来似乎用量的方法还不能充分证明。(划问号)

师:还敢接受更大挑战吗?把量角器和你的工具都收起来,只借助这张三角形纸片证明出三角形的内角和是180度,你有办法吗?或许下面的同学还有别的方法,下面就请同学们互相交流交流,动手试一试吧!

师:这种方法怎么样?(鼓掌)老师感到非常的惊喜,你看他们没有破坏三角形,就这样轻轻的一折,就解决了问题,真是很巧妙。

师:你们小组每个同学都动脑筋了,谢谢你们。

师:还有那个小组用的这种方法?你们也非常的聪明。还有别的方法吗?

师:其实大家能用3种方法证明已经很不简单了,现在我们就能很自信的说三角形的内角和是180度。(擦别的)

师:其实对我来说重要的不是知识的结论,让老师感动的是你们那种渴望求知,敢于探索的精神。更让老师高兴的是你们积极思考所得出的创造性的方法。现在我们再来一块回顾一下。

师:这几种方法都足以说明三角形的内角和是180度。(结论)

师:刚才同学们发挥自己的聪明才智,想了很多方法来证明。王老师也有一种方法能证明。老师这里有一个活动角,借助课本的一边就构成了一个三角形,请你睁大眼睛仔细观察,你发现了什么?

请你再仔细观察,你发现了什么?其实两个底角减少的度数,正是顶角增大的度数。如果我继续按下去你觉得会怎样?我们来看看是不是这样,三角形呢?两个底角呢?刚才三角形的动态过程是不是也能证明三角形的内角和是180度?

师:看来只要大家肯动脑筋,面对同一问题就会有不同的解决方法。

师:现在我们知道了“三角形的内角和是180度”,能不能用这个知识来解决一些问题啊?

生:能。

二、迁移和应用

(一)点将台:

下面哪三个角是同一个三角形的内角?

(1)30 °、60 °、45 °、90 °

(2)52 °、46 °、54 °、80 °

(3)45 °、46 °、90 °、45 °

(二)我会算

1、已知∠1,∠2,∠3是三角形的三个内角。

(1)∠1=38° ∠2=49°求∠3

(2)∠2=65° ∠3=73° 求∠1

2、已知∠1和∠2是直角三角形中的两个锐角

(1)∠1=50°求∠2

(2)∠2=48°求∠1

3、已知等腰三角形的一个底角是70°,它的顶角是多少度?

(三)。变变变!

(1)一个三角形中, ∠1 、∠2、∠3。

(2)如果把∠3剪掉,变成了几边形?它的内角和变成多少度呢?

(3)如果再把∠2剪掉,剩下图形的内角和是多少度呢?

三、全课小结

师:通过一节课的探索,你有什么收获?

生答(略)

我的几点认识:

结合《三角形的内角和》这节课,我对空间与图形这一部分内容,简单的谈一下自己的认识。

空间与图形这一部分内容,可以用这几个字来概括:难理解,难受,难掌握。在本节课的教学中,三角形的内角和概念比较抽象,学生比较难理解。尤其是让学生探究三角形的内角和是180度,对学生来说更是难上加难。如果光凭在头脑中想,不动手实践,对于三角形的内角和,学生也只能机械记忆是180度。那如何更好的让学生掌握和接受呢?针对这些特点我采用了一下几点做法:

1、根据学生的知识特点和生活经验,在原有基础上创造性的使用教材。

在教学本节课的内容时,学生在自己的日常生活或大部分都已经知道三角形的内角和是180。因材在这样的情况下,我创造性的使用教材。不是让学生通过自己动手操作之后才发现三角形的内角和是180,而是直接把问题抛给学生,你们知道三角形的内角和是多少度吗?

你们怎么知道的?能自己证明么?这样学生从被动学习者的角色,

立刻转入主动学习者的角色之中。这样既能使学生很好的掌握知识,又能使学生激发兴趣,提高积极性。

2、让学生在小组交流中进行思维的碰撞,在动手操作的实践过程中得到知识情感价值的升华。

在探究的过程中,我们采用了小组合作学习方式,这样既能给学生提供交流的空间,又能在短时间内有效学习。学生先交流方法,商定出可行的办法和方略,然后合作进行实践。学生会为了一个问题争的面红耳赤,在这个过程中我们惊喜的看到生在交流和动手操作过程中得到了提高。通过自己的实践证明,学生发现三角形的内角和的确是180度。

总之,在教学空间与图形的内容时,一定要让学生看到“图形”,让学生想象"空间”。

三角形内角和课堂总结篇十一

《三角形内角和》教学反思

这节课上完之后,我在课后进行了小结,授课过程中有讲得好的环节也有处理得不好的环节,下面从几个方面小结:

1、小组合作,自主探究。整节课都很注重学生自主探究,动手实验的过程,我只是一个主导者,组织好课堂教学,放手让学生去实验、讨论、归纳,没有像之前上课那样由本人讲完整节课而学生只是听。小组合作之前的部分处理的还算干脆利落,达到自己预想的结果。

不足之处:如果引入部分的疑问换做如果老师要想求出破损的角的度数,这个问题会和本节课的联系更紧密一些。

2、量一量的方法说的的很好,但是剪一剪和折一折的方法学生没展示好。在学生展示时老师的指导没跟上,虽然展示的结果基本上出来,但没达到我预想的效果。如果再让学生用量角器量一量拼完之后的角是180°,会更清楚。另外剪一剪方法和折一折方法时应让学生说一说,将三个内角拼在一起后,让学生指一指三角形的三个内角在哪里,拼在一起有什么作用,就相当于将三个内角相加,多说这么一句话可能学生对这种方法理解的更透彻了。

3、我班的一个男孩子将三个三角形的三个角拼在一起,学生的这种想法是我没有预想到的,我让他来前面展示,这种方法是错误的。如果我再鼓励一下他很有探索精神会更好。我向学生们解释他拼在一起的`不是一个三角形的里面的三个内角。如果让学生来说一说他错在哪里,如果学生说不出来,这时老师再说,可能会更好。另外老师把这三个三角形放在一起看一看,确实不一样大小,学生会理解的更好。我觉得还可以补充一句,让孩子们课下做三个一样的三角形摆一摆,亲自尝试一下,就更好了。

4、小组汇报成果的时候,我还是觉得层次不是很清楚,与自己预想的还有出入,有一个问题,我想问学生剪一剪和折一折的方法与量一量的方法比较好在了哪里?我想通过对比加深理解。可能当时还是有点紧张,结果我忘记问这个问题了。

5、老师的课堂调控能力还有待提高,当学生的展示方法的顺序和老师预想的不一样时,老师不能慌,随机应变能力还有待提高。当时我虽然转变了思路,但表现可能不自然,还有待磨练。

6、三角形的内角和不因三角形的大小而改变,或对三角形进行剪的操作还是拼的操作,只要最后得到的是一个三角形内角和都是180°。我给出这个结论是通过习题的形式给出的,孩子们的表现真的很好,我很高兴,第一个孩子能够在解释原因的时候就能概括出三角形的内角和不因三角形的大小而改变,令我很满意。后面的判断题有两道题和这个知识点有重复,可以换别的类型的判断题。

7、我对教案进行了反复修改,创设了生活中的问题情境,激发学生想探究三角形内角和的欲望,放手让学生小组合作自己寻求验证结论的方法。但这样的放手能完成教学任务,会不会出现冷场吗?我的心里还是没底。正式上课时,学生自己找出了很多验证三角形内角和的方法,很多同学的表现让我意外。许多举手的同学都是我没想到的。我也给了他们表现的机会。课下一个小女生找到我,说老师我举了好几次手,您怎么不叫我。我听了这话心里很高兴,不管这节课讲得怎么样,学生能这样跟我说,我心里很高兴,看来这节课他们的学习热情还是很高的。这节课学生谈收获的时候学生说的很不错,学生的表现让我很高兴。

所以,我们要学会放手,轻松自己,发展学生。放手让学生自己去思考去做,那怕他想错了做错了,只有这样他们才有机会知道自己错了错在哪儿,给他们更自由更广阔的发展空间,也只有这样才能唤起他们思考的欲望,也只有这样才能扬起他们创造的风帆!

三角形内角和课堂总结篇十二

教学内容

人教版小学数学第八册第五单元第85页例5

任务分析

教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想―验证―结论的过程,来认识和体验三角形内角和的特点。

学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。

教学目标

1、通过实验、操作、推理归纳出三角形内角和是180°。

2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。

3、通过拼摆,感受数学的转化思想。

教学重点

探究发现和验证“三角形的内角和180度”。

教学难点

验证三角形的内角和是180度。

教学准备

多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。

教学过程

一、复习旧知,学习铺垫

1、一个平角是多少度?等于几个直角?

2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?

二、探究新知,理解规律

1、说明三角形的三个内角和

说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?

师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。

板书课题:“三角形的内角和”。

揭示课题:今天我们一起来探究三角形的内角和有什么规律。

2、探究三角形的内角和规律

探究1:量一量,算一算

以小组为单位,用量角器计算出三种三角形的内角和各是多少度?

生讨论汇报,并引导学生发现:三角形的内角和接近180°。

师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?

学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?

探究2:摆一摆,拼一拼

引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?

生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做

如图:

(1)

锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°.

(2)

让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°.

(3)

让学生独立用同样的方法,发现:钝角三角形的内角和也是180°.

引导学生归纳:三角形的内角和是180°。

是不是所有的三角形的内角和都是180°呢? (是,因为这三类三角形包括了所有三角形。)

板书:三角形的内角和是180°

三、巩固练习,应用规律

1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?

学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1+∠2+∠3=180°,借助图像

∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

= 180°-140°-25° =180°-(140°+25°)

=40°-25° =180°-165°

=15° =15°

2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?

学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以

(180°-80°)÷2

=100°÷2

=50°

四、拓展练习,深化规律

1、求出下面各角的度数。

(1) (2)

2、判断

(1)三角形任意两个内角的和大于第三个角。( )

(2)锐角三角形任意两个内角的和大于直角。( )

(3)有一个角是60°的等腰三角形不一定是等边三角形。( )

3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?

( ) ( )

五、课堂小结,分享提升

1、谈谈这节课你有什么收获?

2、课后思考题

三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)

板书设计

三角形内角和课堂总结篇十三

探索三角形内角和的度数以及已知两个角度数求第三个角度数。

教学目标:

1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?

2、已知三角形两个角的度数,会求第三个角的度数。

3、培养学生动手实践,动脑思考的习惯。

教学重点:

了解三角形三个内角的度数。

教学难点:

理解三角形三个内角大小的关系。

教具学具准备:

课件三角形若干量角器剪刀。

教材与学生

教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。

学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。

教学过程:

一、呈现真实状态。

师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?

学生各抒己见。

二、提出问题:

师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。

(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。

(2)组内交流。

(3)全班交流。由小组汇报测出结果(三角形内角和)

(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。

三。自主探索、研究问题、归纳总结:

师引导提问:三角形的内角和会不会就是180呢?

(一)组内探索:

(1)以小组为单位探索更好的办法。

(2)以小组为单位边展示边汇报探索的过程与发现的结果。

(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)

(3)把你没有想到的方法动手做一次

(使学生更直观地理解三角形的内角和是180的证明过程)

(4)根据学生的反馈情况教师进行操作演示。

(二)教师演示

撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示

2.师:这三个内角放在一起你有什么发现?

生:发现三个内角拼成一个平角。

师:平角是多少度呢?说明什么?

生:180?说明三个内角和刚好等于180。

师:这种方法是不是适用各种三角形呢?

3。学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?

进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。

折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。

你们也来试一试好吗?

在学生完成这一实践后肯定这一发现

三角形三个内角和等于180?

:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率

四。巩固练习,知识升华。

1.完成课本第28页的“试一试”第三题。

2.想一想:钝角三角形最多有几个钝角?为什么?

锐角三角形中的两个内角和能小于90吗?

3.有一个四边形,你能不用量角器而算出它的四个内角和吗?

试一试,看谁算得快。

师:谁来说说自己的计算过程?

角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?

生:它们的内角和都是 180 度。

师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是 180 度呢?

[回答可能有二]:

(一种全部说是:)

师:请问,你们是怎么想的,为什么这么认为?

生: ……

师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(一种有一部分同学说是,有一部分同学说不是:)

师:看来,大家的意见不一致, 想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(二)动手操作,探究新知

师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?

生:我准备用量的方法。

师:然后呢?

生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?

师:说的真不错,还有没有其它的方法?

生:我是把三角形的三个角剪下来,拼在一起( 师鼓励: 你的想法很有创意, 等一会儿用你的行动来验证你的猜想吧!)

生:……

(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)

师: 好啦, 老师相信咱们班的同学个个都是小数学家, 一定能找出更多的方法的, 请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!

开始吧!(学生研究,师巡回指导)预设时间:5 分钟

师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?

师:请你告诉大家,你是怎么研究的,最后发现了什么结果?

( 预设: 如果第一类同学说的是量的方法)

师:你是用什么来研究的?

生:量角器。

师: 那请你说一下你度量的结果好吗?

( 生汇报度量结果)

师: 刚才有的同学测量的结果是180 度,有的同学测量的结果是179 度,有的同学测量的结果是182 度,各不相同,但是这些结果都比较接近于多少?

生:180 度。

师:那到底三角形的内角和是不是180 度呢?还有哪位同学有其它的方法进行验证吗?

生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。

师:他演示的真好,你们听明白了吗? 李 老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击 flash :把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)

师:好极了,刚才这个小组的同学用拼的方法得到xx 三角形的内角和是180 度,你们还有别的方法吗?

生:我们还用了折的方法(生介绍方法)

师: 你们听明白了吗? 李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击 flash :先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)

生:是个平角。180 度。

师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?

师:请这位同学来说给大家听听吧!

生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360 度,那么一个三角形的内角和就是180 度。

师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是 180 度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?

生 1 :量的不准。

生 2 :有的量角器有误差。

师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是 180 度。

师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?

生:三角形的内角和是180 度。(师板书)

师:把你们伟大的发现读一读吧!

(三)拓展应用,深化认识

师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生: 180 度)右边呢(生:也是 180 度)

师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?

(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是 180 度。)

师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)

师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!

师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?

师:好,请看大屏幕!

(出示基础练习)在一个三角形中角一是 140 度,角三是 25 度,求角二的度数。

生答后,师提问:你是怎样想的?

生陈述后,师鼓励:说的真好!

出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。

(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是 70 度,它的顶角是多少度?

师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

(预设:师:根据三角形的内角和是180 度,你能求出下面四边形、五边形、六边形的内角和吗?

师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?

师: 同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?

师:嗯,真不错, 你们知道吗? 三角形的内角和等于 180 度是 法国著名的数学家帕斯卡 在 1635 年他 12 岁时独自发现的, 今天凭着同学们的聪明智慧也研究出了三角形的内角和是180 度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!

师:好,下课!同学们再见!

三角形内角和课堂总结篇十四

王晓君

教学《三角形的内角和》这一课时,我首先利用猜谜语引出三角形,顺理成章的让学生回忆已经学过的有关三角形的知识。然后,根据学生的认知特点,设计了 “三角形三兄弟之争”引入课题。通过师生猜角度和活动,学生对内角及内角和的概念有了初步的认识。学生很有兴致地去数去观察三角形内角及内角和。学生正在好奇之时,我适时激疑:“三角形有三个内角,那么他们的内角和是多少度呢?”一切都在顺利地按我的预定设计进行。请同学们同桌一组,利用有关的学具进行验证。”学生饶有兴致地去探究,或数或量或折或比较,在讨论交流中完整地得到了“三角形内角和的知识”……,课堂气氛十分热烈,学生学得积极主动。反思整个教学过程本文来自优秀教育资源网,给我如下启发:我想通过本节课的学习让学生体会到与人合作的必要性和培养动手操作的能力以及创新精神。所以课堂上体现了以下几点:

一、激发学生探究知识的欲望。教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。如“三角形内角和”的引入部分,我先要求学生拿出自己预先准备的三个不同的三角形(直角、锐角和钝角三角形),各自用量角器量出每个三角形中三个角的度数,然后分别请几个学生报出不同三角形的两个角的度数,我当即说出第三个角的度数。一开始,有几位同学还不服气,认为可能是巧合,又举例说了几个,都被我一一猜对了,这时学生都感到惊奇,教师的答案怎么和他们量出的答案会一致的。“探个究竟”的兴趣因此油然而生。

二、教师的教学方式要适应学生的学习。在教学过程本文来自优秀教育资源网中,我给学生设置了一个开放的、富有挑战性的问题情境,让学生独立、自主地去探究验证其他学生已发现的知识,通过实验、操作、交流等活动,经历探究过程,获得知识与能力,掌握解决问题的方法,获得情感体验。我想:只要我们坚持“为学生的发展而教”,那么我们的课堂将会更加生机勃勃、充满智慧的欢乐和创造的快意。

三、联系生活实际,感受数学的作用。数学来源于生活,又高于生活,应用于生活。因此,数学教学要紧密联系学生的生活实际。学生学习的目的也就是让他们在生活中学有所用。在本课的教学中,我设计了让学生“量一量”、“撕一撕”、“折一折”“算一算”等活动,贴近了学生的生活,降低了学习难度。

四、存在问题:比如:课前的教具准备不够充分;学生在折纸验证三角形的内角和后汇报时,我引导小结不够。同时我还在想:小学生毕竟知识有限,在小组合作探究时老师应该干什么?是不停地提示学生应该干什么怎么干好呢?还是快速浏览每个小组,找到最需要帮助的小组,然后介入其中好呢?再者就是当学生的认知和原有的经验发生冲突时怎么办?在新教育理念下,实际的课堂情境中往往会有很多情况出现。如果我这样做了,我的教学任务就完不成了;如果我那样做了,就可能会偏离我的教学设计,学生的问题可能会让我不知所措。我想,课堂教学是为学生的学习和成长服务的,教师要勇于放手,给学生更大的思维空间,授之以“渔”,而不是授之以“鱼”。

三角形内角和课堂总结篇十五

教学目标:

1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?

2、已知三角形两个角的度数,会求第三个角的度数。

3、培养学生动手实践,动脑思考的习惯。

教学重点:

了解三角形三个内角的度数。

教学难点:

理解三角形三个内角大小的关系。

教具学具准备:

课件三角形若干量角器剪刀。

教材与学生

教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。

学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。

教学过程:

一、呈现真实状态。

师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?

学生各抒己见。

二、提出问题:

师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。

(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。

(2)组内交流。

(3)全班交流。由小组汇报测出结果(三角形内角和)

(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。

意图:通过这一操作活动,激发学生的兴趣,让学生积极参与培养学生的动手操作能力]

三、自主探索、研究问题、归纳总结:

师引导提问:三角形的内角和会不会就是180呢?

(一)组内探索:

(1)以小组为单位探索更好的办法。

(2)以小组为单位边展示边汇报探索的过程与发现的结果。

(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)

(3)把你没有想到的方法动手做一次

(使学生更直观地理解三角形的内角和是180的证明过程)

(4)根据学生的反馈情况教师进行操作演示。

(二)教师演示

撕拼法:

1、教师取出三角形教具,把三个角撕下来,拼在一起,

2、师:这三个内角放在一起你有什么发现?

生:发现三个内角拼成一个平角。

师:平角是多少度呢?说明什么?

生:180?说明三个内角和刚好等于180。

师:这种方法是不是适用各种三角形呢?

3、学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?

进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。

折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。

你们也来试一试好吗?

在学生完成这一实践后肯定这一发现

三角形三个内角和等于180?

意图:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率

四、巩固练习,知识升华。

1、完成课本第28页的“试一试”第三题。

2、想一想:钝角三角形最多有几个钝角?为什么?

锐角三角形中的两个内角和能小于90吗?

3、有一个四边形,你能不用量角器而算出它的四个内角和吗?

意图:这样分层安排练习,注重培养学生的分析能力,同时也培养学生的思维能力和口头表达能力。

五、总结延伸

这节课同学们通过测量,发现了问题,然后运用撕拼,折叠两种方法验证自己的猜想,得出结论,这种学习方式很好,我们在今后的学习中还要用到,我们今天探究了三角形的一个秘密,其实它的秘密还很多,有兴趣的话,我们以后继续研究。课后反思:

当我设计这节课时,首先思考,学生面对这个新问题时会想到用那些方法来思考呢?很显然,学生根据三角形大的内角就大,是学生在探究时的真实想法,是一种合情推理,在探究过程中,怎样对待学生的这个错误呢?我没有简单地予以否定,迫不及待的帮助,而是引导学生否定错误猜想,寻找错误产生的原因,在这个过程中,教师启迪学生“转化”的思想求得突破,然后引导学生进行操作验证,从中得出结论,学生完整地经历探究的整个过程,不仅获得知识,还获得思想,充分发挥了学生的主观能动性,使他们轻松愉快的学习,提高了课堂效率。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服