范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
三年级下册两位数乘两位数教学设计及反思篇一
本节课是在学习了两位数乘一位数的乘法和两位数乘整十数的乘法基础上学习今天的新知识。导入新课正是旧中引新,为讲授计算方法和算理做好知识上和心理上的准备。
讲授新课时,利用迁移的原理,在教师引导下,使学生一步一步地加深对算理和算法的认识和理解,从而很轻松地获得了新知识。
通过对练习的精心设计,使学生从不同的角度加深对算法及算理的认识,激发了学习兴趣,提高了计算能力,注意了培养学生认真计算、书写工整的良好学习习惯。
重视知识间的“纵向”联系,有效把握知识的前后联系,提高教学设计与实施效果;尊重学生已有的知识基础与生活经验,可以提高教学的针对性和有效性。引导学生经历探究“两位数乘两位数”算法的过程,培养学生的数感,发展学生的比较、概括及抽象能力。
“两位数乘两位数”是青岛版五年制教材三年级上册的内容,是两位数乘一位数的继续,是学习两位数乘两位数的起始,是三位数乘两位数的基础,所以这部分内容起到了承上启下的作用。
学生已经学过了两位数乘一位数和两位数乘整十数,学生完全有可能利用已有的知识经验计算出得数,老师课上需要做的只是引导学生回忆、帮助学生规范、把认识加以提升。学生只要学会了这部分内容,三位数乘两位数的时候完全可以迁移过去。
青岛版五年制小学数学三年级上册第63~65页。
1.经历探索两位数乘两位数(不进位)口算和笔算方法的过程,理解算理,掌握算法。
2.通过小组合作和交流,感受计算两位数乘两位数(不进位)方法的多样化,培养数感和数学思维能力、交流能力及合作意识。
3.在探索算法和解决问题的过程中,感受数学与生活的联系,增强自主探索的意识,提高交流合作的能力,获得成功的体验,树立学习的信心。
探索两位数乘两位数(不进位)的算法,理解算理。
理解“用十位去乘”时得数的写法及算理。
课件出示信息窗,请学生观察图,找数学信息(注意引导学生分类找信息,找相关的信息),并将每组相关信息予以板书,然后让学生根据每组信息提出问题。
(学生可能找到的相关信息:这条街上有23根灯柱,每根灯柱上有12盏灯。可能提出的问题:一共有多少盏灯?)
1.列式
⑴根据信息和问题列式,并简单说一说列式的根据。(板书:23×12)
⑵找该算式和以前学过的乘法算式有什么不同?(使学生明确知识的发展点。)
⑶板书课题:两位数乘两位数
2.试算
⑴请学生动脑思考能不能用以前学过的方法计算出得数,并把算法写到练习本上,遇到困难时,可以和小组同学交流一下。(引导学生寻找知识的生长点)
⑵师巡视指导。
⑶交流算法。
学生可能会出现的算法:
a:23×10=230
23×2=46
230+46=276
b:20×12=240
3×12=36
240+36=276
(引导学生明确:两位同学都是把其中一个因数拆分之后,转化成了以前学过的算式。)
⑷小结:同学们真善于动脑筋,两位数乘两位数不会算,就想到了把它转化成我们学过的两位数乘一位数和两位数乘整十数。看来遇到新的问题的时候,想办法把它转化成我们以前学过的旧知识,的确是一个很好的学习方法。
3.笔算
⑴请学生试着用竖式计算23×12,遇到困难可以和小组的同学一起商量。
⑵学生试做,师巡视指导。
⑶展示交流。
独立计算21×43,集体订正时说一说计算过程。
1.根据竖式写得数。
师:你是从竖式中的哪一部分看出来的?
2.你能很快判断出对错吗?
42×21=126(出示横式,不出竖式)
(学生可能根据个位上的数进行判断,也可能利用估算进行判断)
找错因,明算理。(出示竖式)
师:你觉得在用竖式计算两位数乘两位数时应注意什么?
师:是呀,在用个位上的数去乘时,得数的末位要和个位对齐,用十位上的数去乘时,得数的末位就要和十位对齐。
三年级下册两位数乘两位数教学设计及反思篇二
1、对两位数乘两位数的口算、估算、笔算方法进行回顾和整理,提升学生对本单元知识的掌握水平,培养学生总结和归纳的能力
2、通过解决实际问题,使学生进一步体会计算与生活的紧密联系,增强应用知识。
1、向学生生动地讲述这个小故事,然后请学生说一说想法。
2、看书p68页故事的文字叙述,提出问题。
1、组织学生小组讨论方法,并将小组内的方法汇总。
(1)出示各组的方法,并请学生说明解决问题的过程。
(2)师对学生想出的各种方法进行总结和讲评。例如:一个字一个字地数可以得到精确的数字,但费事费力,不宜操作。
(3)借助学生所用的估算、笔算等方法,让学生回顾口算、估算、笔算方法,并说说计算过程。
2、练习十七第1题
(1)比一比,看谁算得又对对快!
(2)让学生说说自己是怎样算的并引导其总结出规律
3、练习十七第2题
(1)谁能说说企鹅的生活习性?
(2)出示企鹅卡片:它们要选择一块属于冰块嬉戏,大家愿意帮助它们吗?
(3)核对大家选择的结果,表扬学生助人为乐的精神
4、练习十七第4题
(1)观察情境图,让学生独立思考如何解决问题
(2)组织学生小组讨论,说说题意,问题是什么,基本的数量关系是什么?需要哪些数据,怎样列式计算等。
(3)请学生说说自己解决这个问题的全过程
1、本节课对这一章所学内容进行了整理复习,这一章我们主要学习了哪些知识呢?在进行口算、估算、笔算的过程中要注意什么问题呢?
2、作业
(1)将你自己总结出的口算、估算和笔算规律和你认为要注意的问题写在作业本止。
(2)回家收集有关世界杯足球赛的资料,完成练习十七第3题。
三年级下册两位数乘两位数教学设计及反思篇三
本单元是在学生能够比较熟练地口算整十、整百数乘一位数(20×3200×3),两位数乘一位数的笔算(每位乘积不满十)(43×2),掌握了多位数乘一位数的计算方法的基础上进行教学的。本单元主要内容有:口算乘法、笔算乘法。
1、会口算整十、整百数乘整十数,会口算两位数乘整十、整百数(每位乘积不满十)。
2、掌握两位数乘两位数的计算方法。
3、能结合具体情境进行乘法估算,并解释估算的过程。
笔算两位数乘两位数;解决问题。
两位数乘两位数的算理。
1、让学生通过解决问题学习计算方法。
2、让学生主动探索计算方法。
3、加强估算,鼓励算法多样化。
4、注意处理好口算、估算、笔算三者之间的关系,要做到三算互相促进,达到共同提高的目标。
9课时
口算乘法
教学内容:
58页例1及做一做、练习十四1~4题。
经历探索口算方法的过程,学会口算整十、整百数乘整十数及两位数乘整十、整百数(每位乘积不满十)
学会口算整十、整百数乘整十数及两位数乘整十、整百数(每位乘积不满十)
口算卡片等。
一、回顾学过的口算方法
口算下面各题:
40×460×530×3300×7200×8
12×424×213×332×311×5
自己选两题,说说口算方法。
二、新课
1、提出问题
(1)仔细观察例1图
(2)请学生提出问题。
(3)从学生回答中选择例1的两个问题:
邮递员工作10天,要送多少份报纸?
工作30天,要送多少份报纸?
2、探讨口算方法。
(1)请学生思考、交流解决问题的方法。引出算式:
300×10300×30
(2)小组讨论:怎样想出得数?
(3)各组代表向全班汇报本组的各种口算方法。
(4)评价。
3、尝试解决问题。
(1)请学生运用口算方法解决其余的问题。如:工作10天,要送多少封信?工作30天,要送多少封信?
(2)组织交流。
请学生说一说解决问题的过程和结果。让学生在交流中品尝学习的乐趣。
4、探讨新的口算方法。
(1)出示:42×1023×3014×200
请学生思考,讨论怎么算?
(2)组织交流,并由教师评价每种方法。
三、练习
1、完成做一做的8道题。
(1)先由学生独立计算,集体订正。
(2)引导学生总结,发现规律。
2、独立完成练习十四1~2。
3、解决实际问题:练习十四3~4。
四、总结
请学生谈收获。
教学内容:
59页例2(估算)
教学目标:
1、使学生初步掌握两位数乘两位数的估算方法。
2、能结合具体情境进行乘法估算,并解释估算的过程。
教学重点:
初步掌握两位数乘两位数的估算方法
教学过程:
一、复习旧知:
1、口算下面各题:
40×1060×2030×40300×70200×80
12×400240×2130×330×311×50
2、求下面各数的近似数:
321868729535842
选择几个数说一说是怎样求近似数的。
3、估算:
198×4305×6485×3182×5
说一说你是怎么估的?
二、探究新知:
1、提出问题:
(1)出示例2图:请学生仔细观察。你从图中了解到什么?
(2)把在图中获取的信息汇总,说成完整的一道题:
大会堂里共有18排座位,每排22个座位。有350名同学来听课,能坐得下吗?
2、探讨估算方法。
(1)请学生思考、交流解决问题的方法。引出算式:
18×2222×18
(2)小组讨论:怎样估算得数?
(3)各组代表向全班汇报本组的各种估算方法。
方法一:18≈2022≈2020×20=400
方法二:18≈2022×20=440
三年级下册两位数乘两位数教学设计及反思篇四
1.知识与技能目标:
(1)、进行两位数乘两位数的估算、计算、巧算的巩固练习。
(2)、通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
2.过程与方法目标:学生通过观察、猜想、验证、得出结论、提出质疑、完善结论,上孩子们经历一个完整的过程,体验到探究的乐趣,感受数学的魅力。
3.情感态度和价值观目标:学生在自主探究解决问题的过程中,体验成功的喜悦或失败的教训,体会数学在日常生活中的应用价值。
教学重点:让孩子们学会观察、学会思考、敢于质疑,培养探究意识。
教学难点:通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
启发诱导法、讲授法、探究法
练习法、探究法、小组交流法、观察法
(一)引入新课
师:同学们,今天的数学课,我们先从画画开始!
(老师在黑板上画出对称图形的一半)
师:如果老师画的是整个图形的一半,谁愿意帮老师画出图形的另一半?
(让学生补充完整)
师:同学们,这位同学画的对吗?是的,图形当中有这样的对称现象!其实,在我们的语言当中也有这样的对称现象。
(老师点击屏幕,出现——好人)
师:大家想象着:如果在好人的后面也存在着那么一条对称轴的话,根据读音对称应该是:(大家一块说)人好。(点击第二个)我爱你——你爱我
蓝天——天蓝,喜欢我——我欢喜,老师希望我们整节课都欢欢喜喜!好,上课!
(二)新课教学
同学们,你们知道吗,在我们学过的两位数乘两位数中也有这样的对称现象,我们今天就来复习两位数乘两位数(板书课题),让老师随手写几个两位数乘两位数的算式,好不好?
(老师出示21×36、41×28、36×42、96×46),老师写了几个算式,想一想,如果在这几个算式的后面也存在着一条对称轴,和它们对称的算式是什么?(提问)可见,在两位数乘两位数中,还真的有这样的对称现象,是不是?是!可是,老师觉得,我们就这样写出几个对称算式,也并没有什么了不起,如果我们能够发现,这每一组对称算式之间的一些秘密,那是不是就更棒了?如果我让你们去研究,那你们会试着研究什么问题呢?或者说,你们会有些什么猜想呢?有没有?你们有没有觉得这两个算式之间会有什么联系呢?
【设计意图:课始,老师利用对称算式引入,既使新知保持一种神秘感,又能让学生积极主动地投入学习活动之中。】
学生猜想:每组两对称算式的乘积是否相等?(老师复述)如果让你去研究,你就会研究它们的积是不是一样的,对不对?哦,我觉得这是个有价值的问题,我们可以去研究!
哎,我想问一问同学们,你们学过估算吗?对于这位同学提出的问题,我们可以先用估算来试试看!
生1:第一组算式,可以把21看作20,36×20=720;把63看作60,12×60=720,两道算式的得数相等。
生2:如果把21看作20、36看作40,20×40=800;把63看作60、12看作10,60×10=600,两道算式的得数不相等。
生3:我想把每个数都往小了估:如果把21看作20、36看作30,20×30=600;把63看作60、12看作10,60×10=600,两道算式的得数相等。
师:奇怪了!用估算方法算出来的每组两道算式的积有时相等,有时却不相等。那么,用估算方法能否判断每组算式的积是否相等呢?(不能)那可以用什么方法来判断呢?
生:笔算。
那同学们还等什么,拿出你手中的笔和纸,选择其中的一组,算一算,好吗?(学生练习)算好的。可以坐直,心里已经有结论的,我们先把笑藏在心里。
看到同学们都算的这样认真,我心里非常感动,同学们,我们只有准确的计算,才能得到正确的结论。
(学生交流计算结果)那通过我们的计算,你们能得出什么结论?
(如果孩子们得不出结论,让提出猜想的孩子复述他的猜想)
(学生得出结论)对称算式的乘积是相等的!(电脑呈现结论):
两位数乘两位数,两个“对称算式”的乘积相等。
(老师反问)同学们现在都相信这个结论吗?相信吗?我再问一问,有没有人怀疑这个结论的?要不,老师再写一个试一试,好不好?(老师又写了一个算式62×39),孩子们写出了对称算式,并通过计算,得出结论依然正确。
老师:现在还有没有怀疑的?看来同学们对这个结论已经深信不疑了。像刚才那样通过几个例子得出结论的方法叫做“不完全归纳法。”
(老师板书)对于“不完全归纳法”,有一个非常美丽的故事:那就是华罗庚爷爷讲给他的中学生听的,今天我也想把这个故事将给大家听,好不好?听完这个故事,我们再来说一说这个结论你是否相信,好吗?
故事是这样的:有一个主人买回了一只公鸡,第一天,主人给公鸡为了一把大米,第二天,主人仍然给公鸡为了一把大米,到了第三天,主人依旧给公鸡为一把大米,主人每天都给公鸡一把大米,连续给了九十九天,公鸡每天都会从主人那儿得到一把大米,此时,公鸡想:我每天都会从主人那儿得到一把大米,可是结果却不在美丽,到了第一百天,家里来了客人,公鸡没有再得到那把大米,而是被主人杀了。
好了,同学们,公鸡通过九十九天的得到的结论居然是错误的,是的,不完全归纳法,有时能得到正确的结论,而有时得到的结论却是错误的,后来人们把不完全归纳法得到错误结论的那一种情况戏称为“公鸡归纳法”。
师:好了,现在我想问一问大家:你们对这个结论还深信不疑的请坐直,有怀疑的请举手?
(大部分孩子都举手)怎么现在个个都怀疑了?为什么都怀疑了?如果你怀疑了,请说出你的理由!
(一个孩子举例说明14×16不等于61×41)
师:同学们,某某某不仅提出了质疑,而且他还在举例子,如果他举得例子是特殊的。你们试一试,看能不能找到一个反例!(同学们拿出笔试着举例)同学们,你们找到反例了吗?其实。我们只要找到一个反例,是不是就可以推翻刚才的结论,哎呀,我看到同学们兴奋地眼神了,如果你真找到反例了,你可以先和你的同桌交流交流了!我看到每个人都在交流,我让几个同学来和大家分享一下!
提问:(一个孩子举例)46×61不等于16×64。
师:我们都没有计算,只有他在计算,我想问一问大家,如果看到这组对称算式,你能否判断他们的乘积是否相等呢?你看的出吗?
我看到已经有同学举起了智慧的手!
(提问)这位同学的发言有值得我们学习的地方,他想到了估算,46×61他把这两个数都往小里估,把46估成40,61估成60,结果是2400,而16×64,把它们都往大里估,把16估成20,把64估成70,结果是1400,因为40×60=2400,20×70=1400显然这里不是等号,而是一个大于号,好了同学们,我知道大家很多同学都找到了反例,但是我们知道只需要一个反例,就可以说明这个结论是有问题的,那我现在问一问大家,你们失望吗?费了那么大劲找到的结论居然是错误的,什么不失望,为什么不失望?是的,我们并不失望,因为我们最起码通过自己的努力,证明了这个结论是有问题的!哎,我想现在有些同学的心里肯定有这样的疑问;为什么老师写的算式都符合这个规律,而同学们写的算式却不符合这个规律呢?难道老师写的算式里隐藏着什么秘密吗?有吗?
(小组之间进行讨论)我发现一些同学已经有想法了,难道老师写的算式里真有一些秘密呀?(学生交流发现的秘密)这位同学说:老师写的算式都符合十位上的数乘十位上的数等于个位上的'数乘个位上的数,真的是这样吗?(老师同学一块验证)
师:那大家既然已经发现了这个秘密,那你们觉得我们这个结论该怎么改才能完善?(学生补充,老师总结)
得出结论:十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等。
【设计意图:在“找到规律——怀疑规律——验证规律——否定规律——完善规律”过程中,学生不断肯定与否定自己的想法,不再轻信别人口中甚至于书中的答案,整个课堂充满了思辨的气息。学生学到的不仅仅是数学知识,更培养了有益于一生的思维品质;不仅激发了学生的探究欲望,而且培养了思维的灵活性。】
师:现在大家对于这个结论,你们怀疑吗?如果还有怀疑,怎么办?大家商量商量,再举例验证。
……
【设计意图:在这一过程中,老师的一个反问,又一次激发了学生的探索欲,让学生对不同的方法进行思考、交流。长此以往,数学的奥妙、数学的美就会深深扎根于学生的心里,学生怎会不喜欢学习数学呢?】
好了,同学们,思考是美丽的,看到同学们都能认真的思考。我很欣慰!我想,同学们心里可能都在想:这个结论到底正确与否?为什么会是这样?在乘法中怎么会有这么有趣的现象?在除法中、加法中、减法中是不是也有一些有趣的现象等待我们去发现?还有多少问题等待我们去探索、去研究,希望同学们在以后的数学学习中,都能带着这种精神,真正走进我们的数学世界!
三年级下册两位数乘两位数教学设计及反思篇五
人教版实验教材三年级下册p59例2
1、结合具体问题情境让学生经历两位数乘两位数的估算过程,培养学生的估算意识,初步理解估算方法。
2、给学生创设主动探索估算知识的空间,解释估算过程,培养学生的数感,进一步提高学生的比较推理能力。
3、培养学生学习数学的兴趣,感受数学与生活的紧密联系。
掌握两位数乘两位数的估算方法,培养估算意识。
教学难点
合理选择估算方法解决生活中的数学问题。
1、口算
20×20=24×10=40×50=12×30=
2、下列算式,你能估算各题的结果吗?你是怎样想的?
28×4≈62×7≈
1、创设情景,引出主题
分析引导:完整地说一说你收集的信息?
“能坐下吗”是什么意思?
要比较座位数与人数的大小,必须先求出什么?
2、尝试估算,探索方法
学生独立完成,个人汇报,教师板书。(着重让学生说说是怎样想的。)
方法小结:两位数乘两位数的估算,它与一位数乘两位数的估算方法相类似,估算时可以把其中的一个两位数看成整十数,也可以把两个两位数都看成整十数,再用口算确定估算结果。
3、巧理信息,探究明理
师:同样是估算,为什么会出现几种不同的结果呢?
四人小组讨论,合作完成学习卡一,并对照黑板板书汇报成果。
分析小结:估算的时候我们可能把因数看大了,这时估算的结果比实际结果大,也可能会把因数看小了,这时估算的结果比实际结果小,不同的估算方法可能会有不同的估算结果,但都会与实际的结果之间存在一定的误差。
4、运用策略,解决问题
刚才我们用了3种不同的方法进行估算,得出3种不同的结果,那是不是每种方法都能比较有把握地判断出够不够坐呢?
着重引导学生明白:在第(3)种情况中,是估小了,既然估小了都够坐,那实际结果肯定就能坐下。这种方法在这里相对而言更有把握解决“够不够坐”的问题。
5、指导看书,质疑释疑
1、随堂练习,检验效果
(1)、口算(书本p62第10题第一行)
89×30≈32×48≈43×22≈35×19≈
()()()()()()()()
(2)、(书本p59做一做)一页有23行,每行约23个字,一页大约有多少字?
2、配对练习,突破难点
《气象知识知多少》每本19元,李老师决定买12本,李老师大约要准备多少钱?
选择答案:a、12看成1010×19=190(元)
b、19看成2012×20=240(元)
针对不同争议,同桌互议,然后汇报。
难点小结:两位数乘两位数的估算,由于因数的不同特点,估算的方法可能有几种,但我们在解决不同的情境问题时,一定要考虑具体情况,灵活地选择合适的估算方法。
勇当小记者,采访听课老师,巩固所学知识。
内容a、我们组采访的是()老师,他家每月水费支出大约是()元,一年大约支出水费元。我们是这样估算的。
内容b、我们组采访的是()老师,他每天批改作业()本,每个星期(5天)大约批改作业本,每学年(40个星期)大约批改作业本。
看到这些数字,你有什么感受?
互动总结:在今天的学习中你有什么感受?又有什么收获呢?
课外延伸:请你把你是怎样用估算来解决实际问题的小故事记录下来,写一篇生动的数学日记。