当前位置:网站首页 >> 作文 >> 2023年八年级上册数学三角形的内角教案(10篇)

2023年八年级上册数学三角形的内角教案(10篇)

格式:DOC 上传日期:2023-03-19 06:49:58
2023年八年级上册数学三角形的内角教案(10篇)
时间:2023-03-19 06:49:58     小编:zdfb

作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。那么我们该如何写一篇较为完美的教案呢?以下我给大家整理了一些优质的教案范文,希望对大家能够有所帮助。

八年级上册数学三角形的内角教案篇一

本教材选自《幼儿园教育教学安排意见》小班内容,认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育使幼儿数学教育的重点内容。幼儿学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。发展它们的空间知觉能力和初步的空间想象力从而为小学学习几何形体做些准备。小班幼儿在他们充分获得对圆形的感知和确认后,再让他们认识三角形的特征,这对发展幼儿的观察力、比较能力和空间概念具有重要意义。认识三角形是在认识圆形的基础上进行的。这就为比较圆形和三角形奠定了知识基础,有利于幼儿对三角形的感知和掌握。本节课的知识点就是三角形的特征。基于以上对教材的分析,结合幼儿的认知特点,确定以下教学目标:

1、教幼儿知道三角形的名称和主要特征,知道三角形由3条边、3个角。

2、教幼儿把三角形和生活中常见的实物进行比较,能找出和三角形相似的物体。

3、发展幼儿观察力、空间想象力,培养幼儿的动手操作能力。

确定目标的依据:小班上学期虽然还没有进行数的形成教学,但在日常活动中已经渗透了许多数的概念教育,因此,通过数形结合认识三角形的特征幼儿有一定的基础。3岁幼儿经常会把几何形体理解为他们所熟悉的实物,因此,教幼儿把三角形和生活中常见的实物进行比较找出和三角形相似的物体有利于发展幼儿对应能力。

围绕教学目标根据小班幼儿的认知特点,我认为本节课的重点是认识三角形的特征,幼儿认知几何形体对图形的知觉属于空间知觉的范畴,从幼儿感知

三角形的形状到表达需要完成配对——指认——图形的特征,因此,三角形的特征定为本节课的重点。

三角形的特征同时也是本节课的难点。三角形的特征有三条边、三个角。但是,对于还没学过一一对应点数的幼儿来说还有一定的难度,所以把三角形的特征定为本节课的难点。

为了让幼儿更好地掌握知识,充分发挥教与学的互动作用,更好地完成教学任务,我将采用游戏法和启发探索法,体现教师为主导,幼儿为主体的师生双边活动。

游戏法:在计算教学中运用游戏法能激发幼儿的学习兴趣,集中幼儿的注意力,帮助幼儿轻松愉快地理解知识,因此,在本节课中,无论是新知的学习,还是复习巩固我都采用游戏的形式,如在课的开始,教师以游戏的口吻介绍两个图形娃娃到小班做客,激发了幼儿的学习兴趣,在复习巩固三角形特征时,设计了游戏给图形娃娃找朋友、奇妙的拼图、拼拼三角形使幼儿进一步巩固了三角形的特征,又激发了幼儿的学习兴趣。

启发探索法:这一教学方法是教学过程中依靠幼儿已有的数学知识和经验启发幼儿去探索并获得新知。其最大的特点是激发幼儿的兴趣,最大限度地调动幼儿学习的积极性、主动性,在本节课认识三角形的特征时,我采用这一方法先出示一个圆形娃娃,再出示一个三角形娃娃,启发幼儿比较三角形和圆形的不同,在幼儿的观察探索中得出三角形有角、有边,通过亲自数一数、试一试,让幼儿明确有三个角的图形是三角形,三角形的角有点儿扎手。

本节课采用的教具:

⑴圆形、三角形娃娃各一个,用于引出课题,激发幼儿兴趣。⑵图形拼图一幅⑶每桌一盘各类几何图形及冰糕棍若干。

选取教具的依据是小班幼儿的年龄特点及认知特点。

1、复习内容的确定:三角形的特征有三条边、三个角。幼儿要掌握三角形的特征,就必须通过数一数来掌握,因此,3的数数的掌握直接影响到幼儿学习三角形的效果,因此将3的数数定为学习内容。采用幼儿比较喜欢的体态动作(拍手、拍肩、拍褪)进行,幼儿比较感兴趣又很快地集中了幼儿的注意力。

2、引导幼儿用探索法和操作法学习新知,发展幼儿的观察力。为了便于幼儿更好地掌握三角形的特征,请幼儿通过观察圆形和三角形有哪些地方不一样?通过亲自数一数、摸一摸来感知三角形的特征。幼儿从观察、判断到表述是幼儿利用旧知获取新知,主动学习的过程。

3、在操作、游戏中发展幼儿的空间想象力,在复习巩固三角形特征时,采取了游戏《给图形娃娃找朋友》、用小棍拼三角形。幼儿在游戏时,就需要将头脑中三角形的特征的轮廓体现出来,需要幼儿将想象、图形小棒联系在一起,进一步发展了幼儿的空间想象力,同时幼儿联想生活中的实物与三角形想象的物体将图形与实物相联系,从而发展幼儿的空间想象力。

4、数形结合,时幼儿在掌握特征的同时,加深幼儿对3的认识,在学习三角形特征时让幼儿数数三角形有几条边、几个角在看拼图找三角形的游戏中,让幼儿数数蝴蝶的翅膀、树身、房顶个由几个三角形拼成,在数形结合中既巩固

了新知,又发展了幼儿的观察力和思维能力。

为了小学过程中更好地突出重点,突破难点取得较好的教学效果,我准备分以下几个步骤完成教学任务:

1、复习3的数数

设计这一环节的的是为了在下步学习三角形特征时幼儿能更好地学习掌握,能准确感知图形特征这一环节,采用体态动作一集体复习的形式进行。

2、学习三角形特征:这一环节是本节课的重点难点所在,我准备分以下几步完成,以突出重点、突破难点。

⑴引导幼儿观察比较圆形娃娃和三角形娃娃的不同,提供幼儿每人一三角形,通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。

⑵引导幼儿观察几个不同形状、不同大小的三角形,通过验证得出三角形都有三条边、三个角,有三条边、三个角的图形都是三角形。

⑶老师小结三角形特征,使幼儿获得的知识完整化。

3、复习巩固三角形的特征。在幼儿初步掌握三角形特征的基础上只有通过各种形式的练习才能得以巩固,准备分三步完成这一环节。

⑴给图形娃娃找朋友:目的是幼儿排除干扰从众多几何图形卡片中找出三角形。

⑵看图拼图找三角形:

图形拼图能进一步激发幼儿的学习兴趣通过让幼儿观察:

这些拼图像什么?哪些部分是用三角形拼成的?用了几个三角形?

⑶周围环境中找出像三角形的东西:幼儿通过自己的联想寻找发展幼儿的空间想象能力,进一步巩固了三角形的特征。

幼儿用冰糕棒拼三角形,引导幼儿拼完后讲一讲你拼得三角形有几条边?几个角?用了几根冰糕棒?

八年级上册数学三角形的内角教案篇二

我说课的内容选自人教版义务教育课程标准实验教科书四年级数学下册第五单元《三角形》。下面就几个方面谈谈我对教材的理解:

“三角形”是本册教材的重点内容,属于第二学段“空间与图形”领域。学生通过第一学段以及四年级上册对空间与图形内容的学习,对三角形已经有了直观的认识,能够从平面图形中分辨出三角形。本单元的教学是要在上述内容基础上,进一步丰富学生对三角形的认识和理解。因此,我认为本册对三角形认识的教学目标与第一学段课标中所规定的“获得对简单平面图形的直观经验”有所不同,落实目标的策略也应有所不同,应“使学生通过观察、操作、推理等手段”,逐步认识三角形。在本单元的教学中,在落实“了解三角形任意两边的和大于第三边”、“三角形内角和是180°;”等内容的具体目标时,不仅要求学生积极参与各种形式的实践活动,而且要积极引导学生对活动过程和结果进行判断分析、推理思考和抽象概括,让学生在学习知识的过程中提高能力。

下面我就以知识树的形式,将本单元的内容结构及各知识点的教学目标向大家做以介绍(幻灯片演示说明):这一单元包括两个知识块:三角形的认识和图形的拼组。三角形的认识分为三角形的特性、三角形的分类、三角形内角和三方面内容,也是本单元的重点教学内容。三角形的特性这一内容要求学生掌握三个知识点:

一是结合生活情境和具体的操作活动,使学生抽象概括出三角形的特征,认识三角形各部分的名称及底和高的含义,学会用字母表示三角形。

二是联系生活实际,让学生了解三角形的稳定性及其应用;

三是创设具体的问题情景,使学生在积极的探索活动中发现“三角形任意两边的和大于第三边”。三角形的分类这一内容主要是让学生在给三角形分类的探索活动中,学会根据角和边的特点将三角形类,能够发现和认识这些三角形的特点并能够辨认和区别它们。三角形内角和这部分内容主要是通过一系列的实验、操作活动,让学生推理归纳出三角形的内角和是180°。

在系统学习了三角形的知识后,教材安排了“图形的拼组”内容。它主要包括两部分内容:一是用三角形拼四边形,目的是通过拼、摆、画等活动,让学生进一步感受三角形的特征及三角形与四边形的联系与区别,感受数学的转化思想。另一个内容是用三角形拼组图案,目的是让学生在图形的拼组、设计活动中进一步发展空间观念和动手操作、探索能力。

为了突出本单元的教学重点,突破难点,我在教学中选择和运用了运用如下教学策略:

(一)关注学生的已有经验,强调数学知识与现实生活的密切联系。

教学中我注意从学生已有的经验出发,创设丰富多彩的与现实生活联系紧密的情境和动手实验活动,以帮助学生理解数学概念,构建数学知识。例如:对三角形稳定性的教学,我充分利用教材所提供的三角形在生活中应用的直观图,让学生联系生活思考:“哪儿有三角形?它们有什么作用?”然后让学生亲自做一个实验感受三角形的稳定性。这不仅是认识几何形体特征的需要,而且有助于学生切实感受到数学对于解决生活实际问题的价值。

(二)重视实践活动,让学生在探索中获取知识。

“数学学习的过程实际上是数学活动的过程”,学生对图形的认识是在活动中逐步建立起来的。教学时,我从学生的生活实践出发,给予学生从事数学活动的充分的时间和空间,这主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让他们通过观察、操作、有条理的思考和推理、交流等活动,经历从现实空间抽象出几何图形、探索图形性质及其变化规律的过程,从而获得对图形的认识,发展空间观念。例如三角形三边之间的关系、三角形的内角和、三角形与四边形的联系等,均是让学生在操作、探索中发现、形成结论。

(三)促进教学中的数学交流。

教学中我重视为学生创设交流的情境,提供“数学对话”的机会,鼓励学生用耳、用口、用眼、用手去表达自己的思想和接受他人的思想。如教学“三角形任意两边之和大于第三边”时,出示情境图后提出问题:“从小明家到学校有几条路?哪条路最近呢?为什么?”引导学生思考、交流。由于学生还未正式学习三角形边的关系知识,因此在交流时,要鼓励学生结合生活经验谈看法,用自己的话来描述,教师不要作过多的评论,以保护学生学习的积极性。接着组织学生以小组合作学习的方式进行实验、探究。探究的重点放在引导学生讨论“第(2)、(3)组纸条为什么摆不成三角形?”然后请学生交流自己在探究中的发现,形成结论。最后用自己的发现解释引入中的问题“为什么小明上学走中间这条路最近”。这样的交流活动有助于培养学生的参与意识,不断提高他们的思维水平。

(四)注重教具、学具和现代教学手段的运用,加强教学的直观性。

几何初步知识无论是线、面、体的特征还是图形的特征、性质,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生形象性思维之间的矛盾,就要加强教学的直观性。而本单元三角形所具有的鲜明的直观性为各种教学手段的运用提供了广阔的空间。因此,教学时我本着切合实际,易操作而有实效的原则,利用各种教具、学具和现代教学技术,使学生认识和探索图形的过程更具有趣味性和挑战性,空间观念和实践能力得到进一步发展。

八年级上册数学三角形的内角教案篇三

《认识三角形》是苏教版四年级下册上的内容,在此之前,学生已经学习了角,初步认识了三角形,但对三角形的三边关系未曾探索,本课将引导学生探究三角形的三边关系,理解任意二边之和大于第三边。教材给我们提供2个例子,例题1提供场景图让学生观察,并找出其中的三角形;再联系日常生活说说还在哪里看到三角形。通过找和说唤起学生对三角形初步认识的回忆,从整体上初步感知三角形。例题2让学生任意选三根小棒围一个三角形,在此活动基础上我增加了让学生找出第三边的长度范围,这样使学生知道三角形第三边的长度是有一定范围的,更容易发现三角形任意两边之和大于第三边。最后教材还安排"想想做做",让学生及时巩固所学的知识。所以学好这部分内容,不仅可以从形的方面加深对周围事物的理解,发展学生的空间观念,可以在动手操作、探索规律等方面发展学生的思维和解决实际问题的能力,同时也为学习其他平面图形和立体图形积累知识经验。

根据这一教学内容在教材中所处的地位与作用,以及新课标的要求"人人学习有价值的数学,人人都能获得必须的数学,不同的人在数学上得到不同的发展".结合教材,根据学生的知识现状和年龄特点,我制定了以下教学目标:

知识与技能:

1.使学生知道任意两边之和大于第三边。

2.能判断三条线段的长度能否组成三角形。

过程与方法:

1.在学生探索三角形三边规律的过程中,培养学生自主探索学习的能力。

2.在学生探索发现规律后,培养学生自主总结得出结论。

情感、态度与价值观:

1、鼓励学生探索发现,培养学生小问题大钻研的精神。

2、在数学中很注重结论的严谨性,培养学生严谨的学习态度。

本节课的重点、难点:使学生理解任意两边之和大于第三边四、 说教法学法

在教法上采用实验法、以及分组讨论、合作学习的形式,并运用多媒体课件辅助教学,让学生动手操作,比一比,看一看,想一想,分组讨论、合作学习,老师恰当点拨,适时引导,多媒体课件及时验证结论,激发学生的学习兴趣,调动学生的学习积极性,突出学生的主体性,以学生发展为本,转变学生的学习方式,从而达到培养学生的创新精神和实践能力的目的。

在学法指导上,我将充分发挥学生的主体作用,留有足够的时间和空间激发他们主动探索。借鉴杜威"做中学"的思想,将学生分成5人学习小组,让学生动起来,活起来,让学生在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中,经历想一想,猜一猜,画一画,比一比等活动,努力营造协作互动、自主探究的课堂教学氛围,将课堂的主动权真正还给学生,让学生在自主活动中得以发展。

一、引入谈话

师:孩子们,春天到来了,阳光明媚,春暖花开,如果能到郊外去玩玩儿,那该多好啊,瞧,一群孩子已经来到了公园门口?仔细看看,这幅图上有那些图中哪些物体形状是三角形的?

师:我们生活中还有哪些物体是三角形的?

师:既然生活中有这么多三角形。那我们就一起来研究有趣的三角形。(板书课题:认识三角形)[点评:既然生活中有这么多三角形。会很快激起学生想研究三角形的欲望,一开始就抓住了学生的心,是一个非常好的开端。]

二、操作感知三角形的特征

1、感知生活中的三角形并找出三角形的特征

师:三角形是我们的朋友,它为我们日常生活、建筑业等方面作出了很大贡献。看,这些实物图和标志牌上都有三角形,(课件出示例1的图的三角形),请仔细观察,思考这些三角形有什么的共同特征。 再说说什么样的图形叫做三角形形(让学生充分观察,自己总结出特征)归纳:三角形有三条边,三个顶点,三个角。对照图形,谁能用自己的语言来说说看,什么样的图形叫做三角形呢?引导学生得出:由三条线段围成的图形叫做三角形。(板书)

2、画三角形并理解三角形的特点

师:请在练习本上画一个你喜欢的三角形,画好后,和你的同桌说说三角形各部分的名称。

3、辨一辨并得出判断三角形的条件

师:我们来看看这些小朋友画的三角形,画得怎样?

师小结:判断一个图形是不是三角形首先要看是不是有三条线段,其次看这三条线段是不是围拢了。

(2)操作:第53页课堂活动第1,2题,按要求在本子上画出三角形,并相互检查。

(3)判断哪些图形是三角形?练习十第1题

[点评:学生对三角形并不陌生,早在一年级认识图形时就初步认识了,只不过没有对三角形的特征进行认识,所以这一环节的重点是在观察中概括出三角形各部分的名称,以及用自己的语言描述出什么样的图形是三角形。]

三、感知三角形的特性

(1)师:生活中我们看到了很多物体的形状都是三角形的,如:电线杆架、房架等等。为什么要设计为三角形而不设计为其它的图形呢?还有我们来看小兔家和小狗家的篱笆,谁的更好呢?

请大家猜一猜三角形到底有什么特性呢?我们来做个实验吧。

(2)师:这是同样的木条,用同样的方法,做成的四边形和三角形,请两个小朋友上来拉一拉,你有什么发现?

生:四边形轻轻一拉,形状和大小都变了,而三角形用力拉后,发现形状和大小都不变。

(3)师小结:说明三角形比较牢固,具有较好的稳定性。

(4)举出生活中哪些物品用到三角形的这个特性吗?

(5)师:了解了三角形的稳定性,我想请孩子们来帮帮我。师演示可摇晃的长方形,请小朋友想一想怎样才能把这个四边形固定下来呢?

[点评:这一环节重在让学生通过拉一拉的实践性的比较活动,去感受三角形与四边形在稳定性方面的差别,从而理解生活中很多建筑做成三角形形状的理由,不是要让学生记住三角形不容易变形这个结论。]

四、巩固练习

1.练习第54页第4题。

五、课堂总结

教师:通过这节课的学习,你对三角形有哪些新的认识?

八年级上册数学三角形的内角教案篇四

尊敬的各位评委老师,大家好!

今天我说课的题目是人教版数学八年级上册第十一章第1节《全等三角形》.下面,我将从教材分析,教学方法,教学过程等几个方面对本课的设计进行说明

全等三角形是八年级上册人教版数学教材第十一章第一节的教学内容。本节课是“全等三角形”的开篇,是全等三角形全等的条件的基础,也是进一步学习其它图形的基础之一。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。

本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的目标。

1.知识目标:

(1)理解全等三角形的概念。

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

(3)能熟练找出两个全等三角形的对应角,对应边。

2.能力目标:

(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力;

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3.情感目标:

(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

探究全等三角形的性质。

正确判断两个全等三角形的对应边,对应角。

教学生观察、归纳的方法

为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。

学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与指导学习的学法有机统一。学生用学具操作体会,最终完成学习过程,达到教学目标。

1、看听结合,形成表象。看教师演示,听教师讲解,形成表象。

2、手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。

六、教学用具:

剪刀,直尺,三角板

首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。直观感知全等形的概念。再让学生思考发现生活中有哪些全等形。

然后,教师安排学生自己动手在一张白纸上任意画上一个三角形,再把两张纸小心的重叠在一起,并固定,然后小心地用剪刀剪出两个三角形,让学生通过动手实践合作交流,直观感知全等三角形的概念,并给出全等三角形的表示方法。

然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念。从实践中感知:一个图形经过平移,翻折,旋转,位置变化了,但形状,大小都没有变。,即平移,翻折,旋转前后的图形全等。

然后,让学生给刚才剪出的两个三角形标上字母,并任意放置,与同桌交流,其一:任何时候两个三角形能够完全重合在一起吗?其二:此时它们的顶点,边,角,有什么特点?学生通过操作交流,从而更深刻理解对应角,对应边,对应点的概念以及关系。

再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。

其次,对学生进行随堂练习,深化知识。练习内容为两个全等三角形,任意摆放,找出它的对应边,对应角,对应顶点。并用符与表示出两个全等三角形。

最后,教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。

八年级上册数学三角形的内角教案篇五

根据这一教学内容在教材中所处的地位与作用,以及新课标的要求“人人学习有价值的数学,人人都能获得必须的数学,不同的人在数学上得到不同的发展”。结合教材,根据学生的知识现状和年龄特点,我制定了以下教学目标:

1.使学生知道任意两边之和大于第三边。

2.能判断三条线段的长度能否组成三角形。

1.在学生探索三角形三边规律的过程中,培养学生自主探索学习的能力。

2.在学生探索发现规律后,培养学生自主总结得出结论。

1、鼓励学生探索发现,培养学生小问题大钻研的精神。

2、在数学中很注重结论的严谨性,培养学生严谨的学习态度。

本节课的重点、难点:使学生理解任意两边之和大于第三边

在教法上采用实验法、以及分组讨论、合作学习的形式,并运用多媒体课件辅助教学,让学生动手操作,比一比,看一看,想一想,分组讨论、合作学习,老师恰当点拨,适时引导,多媒体课件及时验证结论,激发学生的学习兴趣,调动学生的学习积极性,突出学生的主体性,以学生发展为本,转变学生的学习方式,从而达到培养学生的创新精神和实践能力的目的。

在学法指导上,我将充分发挥学生的主体作用,留有足够的时间和空间激发他们主动探索。借鉴杜威“做中学”的思想,将学生分成5人学习小组,让学生动起来,活起来,让学生在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中,经历想一想,猜一猜,画一画,比一比等活动,努力营造协作互动、自主探究的课堂教学氛围,将课堂的主动权真正还给学生,让学生在自主活动中得以发展。

出示情景图,找出图中的三角形。把数学问题与生活情境相结合,让数学生活化。学生联系生活说说见到过的三角形,把数学教学与学生的生活体验相联系,生活数学化。从整体上初步感知三角形,再抽象出图形让学生认识,教师并介绍三角形各部分的名称,帮助学生形成三角形的概念。让学生思考:三角形是由三条边组成的,那是不是任意三根小棒都能搭成三角形呢?

小学生好奇、好动,根据小学生的心理特征,教师要千方百计为学生提供操作的机会,手脑并用,化抽象为具体,让每一个学生参与到教学过程之中,让学生在动手操作中掌握知识、发展智力,在动手操作中激发出创新的潜能,体验到发现的乐趣、成功的愉悦。

第一层次是动手操作,发现问题;为每组同学准备好的4根小棒(10厘米、8厘米、5厘米、2厘米),任选其中的3根围一围。并设计“从中你有什么发现?”为学生自主学习搭建一个平台,让学生在更自由、更广阔的空间中去合作、探索和发现。学生在小组的合作与探究中发现不是任何三根棒都能搭出三角形的。事实推翻了学生头脑中以前的错误认知,激起了思维的矛盾,使学生不得不重新认识三角形三边之间的关系。这种重新认识是学生对三角形三边关系认识上的第一层次。

第二层次是小组合作,探究规律;我抓住契机巧妙设疑:任意选择三根小棒,为什么有的能围成一个三角形,而有的就不行呢?

想不想知道其中的秘密?提出活动二的要求:给你两根小棒,一根10厘米,一根8厘米,你还能配多长的小棒和它们组成三角形?两人合作把小棒的长度量出来,比一比谁配的小棒最短?谁配的小棒最长?课堂上,学生小组的合作交流、形成头脑风暴,我有充分的时间去关注学生的动态生成,多方面的深入了解学生的情况,及时点拨。然后组织学生交流,交流时适时运用几何画板演示验证。从而使学生知道第三条边的长度是有一定范围的,这种初步认识是学生对三角形三边关系认识上的第二层次,也是学生思维发展必然经历的一个阶段。

第三层次是推广验证,得出结论。第一步教师引导学生比较围成三角形的三根小棒的长度,用语言叙述三角形的三边关系;第二步全班交流,教师引导学生把结论写规范。重点帮助学生理解“任意”两字,我这样引导学生思考:刚才活动一中10厘米、8厘米、2厘米不能围成三角形,那10厘米和8厘米的和也大于2厘米的,为什么不能围成三角形?你认为对于三角形三边关系,怎样表达更严密?最后学生终于发现:三角形任意两边之和大于第三边。对“任意”二字的理解,使学生对三角形三边之间关系的认识得到了深化。这种深化的认识和理解是学生对三角形三边关系认识上的第三层次。

基础练习在线测试,然后实时反馈测试情况。这部分的练习巩固了基本的知识点,强化教学重点和难点,提高学生对组成三角形的规律的认识,掌握更好的判断方法——较短两条线段之和大于第三条线段,便可构成三角形。

八年级上册数学三角形的内角教案篇六

“三角形的内角和”是人教版小学数学四年级下册第五单元第3节的内容。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的规律,打下了坚实的基础。

一堂成功的课不仅要熟悉教材,还需要我们充分的了解学生的特点。

本节课的授课对象是四年级的学生,从心理特征来说,他们对于新鲜的知识充满着好奇心和强烈的求知欲望,无意注意仍起着主要作用,有意注意正在发展。

从认知状况来说,学生在此之前已经学习了三角形有关的知识,对三角形的内角已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于三角形内角和都是180度的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

根据新课程标准,教材特点、学生实际,我确定了如下三维教学目标。

【知识与技能】通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

【过程与方法】经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。

【情感态度与价值观】在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。

根据学生现有的知识储备和知识点本身的难易程度,学生很难建构知识点之间的联系,这也确定了本节课的重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。

新课程明确倡导动手实践,自主探索、合作交流的学习方式,教师不仅是知识的传授者,更是学生探究性、合作性学习活动的设计者,组织者和学生学习的伙伴。在教学过程中,我将采用创设情境,直观演示,观察,猜测,操作,思考,总结等方法,把学生带进开放的,富有挑战性的问题情景,让学生通过自己学习,合作学习,和交流等活动,获得知识与能力,掌握解决问题的方法,获得积极的情感体验。整个学习和探索活动,体现出开放性思维和多元思维并存的思维方式,教学生初步学会自主梳理知识,探索知识的方法,使他们亲历自主探究的过程。

(一)导入新课

首先是导入环节,我会多媒体课件播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。

根据视频中三角形的对话,顺势引出题目——三角形的内角和。

设计意图:在这个环节中,多媒体课件展示有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。

(二)新课探究

接下里是新课探究环节,在这一教学环节中,我首先让学生画几个不同类型的三角形。然后同桌互相量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发现三角形的内角和是180°。

接着我会提出一个问题是不是所有的三角形的内角和都是180°,如何进行验证你的结论呢?接下来我会让学生分小组讨论,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。

通过小组之间的讨论,引导学生采用剪拼的方法进行验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。最后引导学生总结出三角形的内角和是180°。

此环节通过小组合作,体现以生为本的教学理念。既培养学生的推理能力,又锻炼学生的语言表达能力和沟通能力。

(三)巩固提高

接下来进入巩固提高环节。本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。

练习题组设计如下:

第二题把这两个完全一样的直角三角形拼组在一起,得到的新三角形的内角和是多少度?

设计意图:通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。

(四)小结作业

在小结环节,我会引导学生同桌之间以“你问我答”的形式回顾本节课所学的主要内容,这节课你都学习了哪些内容?三角形内角和定理的推导过程体现了哪种数学思想方法?

这样设计的目的是让学生在回顾课堂经历的基础上,以相互交流、相互启发的方式总结自己的收获,教师通过概括性引导提升学生对三角形的内角和定理的认识

在作业环节,我会让学生利用本节课所学的知识,思考一下四边形的内角和是多少度?

这样设计的意图是学生在学习本节课内容的基础上,进一步对本节课的一个延伸,拓展学生的思维。

为了让学生对本节课的学习形成清晰的思路,同时还有利于学生系统性地记忆新知。我的板书设计如下。

八年级上册数学三角形的内角教案篇七

1.教学内容

九年义务教育六年制小学数学教科书(西师版)四年级下册第40至43页的内容及相关练习题。

2.教材简析

“三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生学习三角形的特征从角和边的不同角度对三角形进行分类做好了有力的知识支撑。三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下基础。

3.教学目标

根据教材内容及学生的知识水平和心理年龄特点,制定了以下教学目标:

(1)让学生通过学习活动,发现三角形和边的特征会给三角形的分类,理解并掌握各种三角形的特征。

(2)培养学生观察,操作和抽象概括能力。

(3)激发学生的主动参与意识,自己探索意识和创新精神。

4.教学重点、难点的确定

根据《三角形分类》这一知识的地位和作用,本课设计的“观察、操作、比较、小组讨论”等教学环节都是为了使学生能根据角的特点给三角形分类,因此这是教学重点。根据学生的认识水平和年龄特点,如何引导学生归纳出各种三角形的特征,这是学生掌握本课知识的一个质的飞跃。因而,“能理解并掌握各种三角形的特征”是本课教学的难点。

5.教学准备

三角板、多媒体课件、学生用表格等

根据新课标的要求和学生的实际,以直观教学为主,运用观察动手操作,小组讨论等多种方法,结合教材,让学生在“看一看”,“量一量”,“比一比”,“说一说”的自主探索过程中发挥学生相互之间的作用,让学生自己在动脑、动手、动口中促进思维的发展,培养学生的'动手操作能力,语言表达能力和自学能力。在教学中,首先把握新旧知识的衔接点,利用教材6个三角形组成的图案,让学生说说自己对三角形的认识,引出课题“三角形的分类”。放手让学生动手操作,小组讨论交流,寻找三角形分类的方法,最后让学生说说自己归类的依据,归纳出各种三角形的特征,培养学生的抽象概括能力。

为了完成本课的教学目标,设计了以下的教学过程。

(一)创设情景,揭示课题

由学生对三角形的认识引入课题,即为学生接受新知识做好铺垫,也让学生明确学习内容直奔放主题。

(二)动手操作,探讨三角形分类方法

1.根据角的特点,对三角形进行分类。

新课标倡导学生主动参与,乐于探究,勤于动手,培养学生搜集和处理信息的能力,分析解决问题的能力,以及交流与合作的能力,把学习变成人的主动性、能动性、独立性不断生成、张扬、发展、提升的过程。

我设计了如下环节:

(1)学生先是独立思考、独立操作,独立探索分类。(事先给每个学生准备一个学袋:一张表格)

①学生根据表格对这个三角形进行观察,再填表。填完表格,再对表格中的数据进行观察,就能容易地进行分类。

②把分类的结果填在表中。

小组交流

学生在小组内分别展示自己的劳动成果,说说自己的分类依据。

(3)展示学生代表作品,学生互评。

(4)师小结归纳(边把分类依据板书出来)

(5)鼓励学生给自己分类的三角形取个名字。

让学生感受到自己就是学习的主人,体验劳动成果的喜悦心情,增强学习的信心。

(6)引导学生对三类的三角形进行比较,得出相同点:每个三角形至少有两个锐角。

(三)指导完成课堂活动及练习十一第1至3题。主要目的是巩固复习更好引领后进生掌握按角对三角形分类。

(四)全课总结

让学生学会自我评价,体现了新课标评价的多样性,还可以训练学生的语言发展能力。

(五)说板书设计

本课的板书意在突出重点,解决知识难点,有学生分类的作品展示,有教师板书的知识点。教学内容一目了然,也便于学生观察、比较。

(六)作业设计。

目的加强巩固,能更好的掌握本课知识点。

八年级上册数学三角形的内角教案篇八

今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第67页的《三角形的内角和》。根据xxx教授的授课七步法,即说教材,说学情,说目标,说模式,说方法,说设计,说板书,我将进行本课的说课。

“三角形的内角和”是新课标人教版四年级下册第五单元第三节的内容。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。

仔细分析教材的知识结构,它是分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180°;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。

1、通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。

2、学生的生活经验是可利用的教学资源。我在课前了解到,已经有不少学生知道了三角形内角和是180度,但却不知道怎样才能得出这个结论,因此学生在这节课上的主要目标是验证三角形的内角和是180度。

根据小学数学教学大纲对四年级学生的具体要求,结合教材特点及学生年龄特征,将本节课的目标制定为以下几点:

认知技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。

数学思考:在操作实验中,让学生感受图形的转化过程及数学建模思想,初步培养学生的空间思维观念。

解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。

情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学中,感受生活与数学的密切联系。

将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。

“三角形的内角和”一课,知识与技能目标并不难,我认为本节课更重要的是通过自主探索与合作交流使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时合作交流中,开拓思维、提升能力。基于以上理念,本节课,我准备引导学生采用自主探究、猜想验证、合作探究的学习模式。体现“以学生的发展为本”这一教育理念。

本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180度。

因为《课程标准》明确指出:“要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力”。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从“猜测――验证”展开学习活动,让学生感受这种重要的数学思维方式。

根据我对教材的把握和对学情的了解,设计了4个环节展开教学。

一、创设情境,发现问题

小游戏:猜一猜藏在信封后面的是什么三角形。

师:我们在猜三角形的时候,看到一个直角,就能断定它一定是直角三角形;看到一个钝角,就能断定他一定是钝角三角形;但只看到一个锐角,就判断不出来是哪种三角形。看来在一个三角形中,只能有一个直角或一个钝角,为什么画不出有两个直角或两个钝角的三角形呢?

三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。

(创设的不是生活中的情境,而是数学化的情境。有的孩子认为一个三角形中可能会有两个钝角,还有的提出等边三角形中可能会有直角,这两个问题显现出学生在认知上的矛盾,学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样"。这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣,让学生在疑问与猜想中寻找验证的方法。)

教学进入第二环节——引导探究

二、动手操作,探究规律

1.介绍内角、内角和,并提出猜想

师:我们现在研究三角形的三个角,都是它的内角。

课件演示:三角形的三个内角

师:今天我们就来一起探究《三角形的内角和》。猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

2.确定研究范围

师:研究三角形的内角和,是不是应该包括所有的三角形?只研究黑板上这一个行不行?那就随便画,挨个研究吧。(学生反对)

请你想个办法吧!

(通过引导学生分析,"研究哪几类三角形,就能代表所有的三角形"这个问题,来渗透研究问题要全面,也就是完全归纳法的数学思想)

3.建立模型,解决问题

(一)测量法:

(1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。

(2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?

(3)记录小组测量结果及讨论结果

实验名称三角形内角和

实验目的探究三角形内角和是多少度。

实验材料尺子剪刀量角器锐角三角形纸片直角三角形纸片钝角三角形纸片

方法一三角形的形状每个内角的度数三个内角的

方法二

我的发现

(4)学生汇报量的方法,师请同学评价这种方法。

师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?

(二)剪拼法

学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)

师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?

(三)折拼法

学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的平角解决的问题。

这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?

(四)演绎推理法

(借助学过的长方形,把一个长方形沿对角线分成两个三角形。)

师:你认为这种方法好不好?我们看看是不是这么回事。

(演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)

师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。

(学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。)

学生用的方法会非常多,但它们的思维水平是不平行的。

直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;

拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;

而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。

前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。

本节课引导学生经历从直观到抽象、思维程度从低到高的过程,感悟数学的严谨性。让学生在经历量和拼之后,逐渐会在思维发散的过程中得到集中,集中为分的方法,最后将四边形一分为二,五边形一分为三,六边形一分为四……,又会发现一些新的规律。】

4.验证猜想"三角形的内角和是180度"

5.进一步感受

(1)三角形内角和与三角形大小的关系

教师出示一个小三角形,问学生内角和是多少度?再出示一个大的等腰三角形,问学生它的内角和是多少度?把这个大三角形平均分成两份,每份内角和是多少度?你有什么发现吗?

(2)三角形内角和与三角形形状的关系

(演示不断变化的三角形。)仔细观察,在这个过程中,什么变化了?什么没变化?(三个角的度数都在变化,内角和却总是不变的)你有什么新发现吗?

如果老师把一个角一直往下拽,猜一猜会怎样?

(通过变化的三角形和三个内角的数据显示,进一步感受三角形的内角和与三角形的形状、大小都没有关系;当把三角形的一个角一直向下拽,这个角变成了一个180度的平角,另外两个角变成了0度角,虽然已经不再是三角形,也能从一个侧面证明三角形的内角和是180度,使学生感受到极限的思维方法。)

6.解释课前问题

用内角和的知识解释课前的问题,为什么在三角形中不能有两个直角或钝角。

三、拓展应用,深化创新

本节课的练习由易到难,设计成三个层次。

1、基本练习形成技能

2、变式练习巩固技能

3、综合练习发展提高技能

介绍科学家帕斯卡(出示帕斯卡的资料)

师:帕斯卡为科学作出了巨大的贡献,在我们以后学习的知识中,也有很多是帕斯卡发现和验证的,他12岁就发现三角形内角和是180度,我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。

多边形边形内角和

(设计求多边形的内角和,旨在把新问题转化归结为求几个三角形内角和的问题上,渗透化归的数学学习方法。)

四、总结全课,全面提升

我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形……这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。

三角形的内角和是180度。

转化的思想:量、撕、剪、折、拼

八年级上册数学三角形的内角教案篇九

首先其推导方法与平行四边形面积公式的推导方法有相通之处。同时本课也是学习梯形、组合图形面积的基础,在实际生活中这部分的应用也非常广泛,所以本课内容的学习是很重要的。

根据三维目标的要求,本节课的目标确定为三个:

1、引导学生经历三角形面积公式的探究过程,掌握三角形面积公式,并会用字母表示,会用公式计算三角形面积。

2、通过探究,培养学生实际操作能力、自主探究能力、与他人合作交流能力以及运用数学知识解决实际问题的能力。

3、在学生经历动手操作、讨论、归纳等探究学习中,体验三角形面积公式推导过程的严密性和公式的确定性,进一步感受转化的数学思想和方法,并获得积极的、成功的情感体验。

教学重点:探索并推导三角形的面积公式,会根据公式计算三角形的面积。

教学难点:学生理解面积公式的推导过程,弄清楚为什么除以2.

教法:由于小学生的认知规律是从具体到抽象,他们有好奇好动的特点。在教学中我采用情境教学法、探究法、实验法等教学方法充分调动学生的主观能动性,力求体现自主性教学原则。

学法:根据本课可操作性的特点,以及学生为主体,教师为主导的教学原则,在学法指导上以学生动手操作为主,配以小组合作学习法,讨论法进行自主探究式学习。

多媒体课件;小黑板;学具 (两个完全一样的直角三角形、锐角三角形、钝角三角形,一个长方形,一个平行四边形,任意三角形3个),剪刀一把。

为了能更好凸显"自主探究"的教学理念,我设计了五个环节:(一)创设情境,激趣引入(二)合作探究,寻找方法(三)实践应运,拓展延伸(四)归纳总结,畅谈收获

(一)创设情境,激趣引入

我通过创设故事情境来引入新课。课件演示:秋天来了,森林的小动物可高兴了,这一天,小狗、小猫、和大公鸡聚到了一起。,它们都认为自己的三角形最大,可是谁也说服不了对方。同学们,你们愿意帮他们解决这个问题吗?那么"要比较三角形的大小就是比较什么呢?"学生会很轻松地回答"要比较三角形的大小就是比较三角形的面积。"今天我们就一起来探索如何计算三角形的面积。(从而揭示课题:三角形面积计算,并板书课题。)让学生猜测三角形的面积可能和我们学过的什么图形有关系?学生独立思考后得出:可能与长方形和平行四边形的面积有关系。由此复习长方形和平行四边形的面积公式以及平行四边形面积公式的推导方法。引导学生思考:能不能把三角形转化成我们学过的图形来计算呢?此方法不仅很好的复习了旧知识,为新知识学习做好铺垫,还调动了学生学习的积极性,激发了学生的探究欲望。

(二)合作探究,寻找方法

这一环节我安排了4个小环节:

第一个环节合作探究奥苏伯尔说过:只有学生亲身经历、感受的东西才能真正理解和掌握。这里,我没有采用传统"省时高效"直接告诉学生答案的方法,而是让学生利用手中两个完全一样的直角三角形和长方形材料小组合作想办法解决。

第二环节汇报交流在小组充分操作、讨论、交流后,出示课件,与学生一起总结出:用两个完全一样的直角三角形可以拼成一个长方形,或者一个长方形可以剪成两个完全一样的直角三角形。从而得出每个直角三角形的面积等于拼成的平行四边形面积的一半;拼成的平行四边形的底等于直角三角形的底,平行四边形的高等于直角三角形的高。并对表现出色的小组给予表扬。

第三环节精讲,再次提出挑战性问题:那么锐角三角形、钝角三角形与平行四边形之间是否也有这样的关系呢?同学们想不想亲自来验证一下?再次激发学生的探究欲望。此环节采用小组合作,自由发挥,自主探索,使学生成为课堂的主人。最后每个小组选代表边演示边汇报探究结果。我出示多媒体课件,引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半;每个钝角三角形的面积等于拼成的平行四边形面积的一半。

通过学生动手操作和学习,他们对三角形面积公式理解得更加透彻,能清楚的认识到因为三角形的面积是拼成的平行四边形面积的一半,所以要除以2从而突破难点。然后引导学生说出:用字母表示三角形面积的计算公式。

在学生拼摆过程中进行转化很自然地渗透"旋转""平移"的思想。同时我还注意引导学生用多种方法探究三角形面积计算公式,我用课件演示方法,通过演示,使学生的思维开阔了,他们会觉得学习数学是一件很有趣的事,会感到数学问题的解决,往往有多种方法和途径。这样学生在今后解决数学问题时,主动探索的积极性也会逐渐增强。学生动手操作,不仅仅是理解三角形面积计算公式这一数学知识的需要,而且也是探究型学习方式的需要。组织学生进行小组合作交流,让学生间相互分享各自的学习成果,达到自我教育,相互学习的目的。

第四环节质疑,在这节课的学习中你还有什么地方不明白?在学习中你遇到了什么困难?你是怎样克服的?学习中你发现了什么数学问题? 这样设计的目的是使学生突破难点对这部分的知识理解的更加的透彻。

(三)实践应运,拓展延伸

数学是为生活服务的,在推导出平行四边形的面积公式之后,为了了解学生的掌握程度,检验他们能否学以致用,通过练习,使学生加深对公式的理解与应用达到熟练灵活掌握的目的,实现了学习数学的价值。让学生在运用知识解决问题的过程中,增强数学的应用意识,提高解决问题的能力。我设计下面几组练习:

(1)基本练习,检测学生直接运用公式进行计算的情况,并适时进行品德教育。

(2)综合练习,深化对推导原理的理解,加深学生对公式特征的认识。

(3)拓展练习,培养学生解决问题的能力。

设计意图:练习设计由浅入深,层层递进,紧扣课题,不但使学生所学的知识进一步深化,而且使学生在练习中思维得以发展,探究能力得到提高,创新素质得到锤炼。

(四)归纳总结,畅谈收获

回想这节课所学内容,说说自己有哪些收获?

这一环节主要是再次把学习的主动权交给学生,让学生在愉悦的氛围中谈收获谈体会,及时评价,学生间互相补充,共同完善,既整理了本课所学知识,又有利于学生学习能力的培养。

板书设计力求简单明了重点清晰,能让学生一目了然。突出了教学的重点,有利于学生更好地掌握和巩固本节课所学的内容。

八年级上册数学三角形的内角教案篇十

(一)教材的地位和作用

《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》、《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习、掌握三角形的内角和是180°这一规律具有重要意义。

(二)教学目标

基于以上对教材的分析以及对教学现状的思考,我从知识与技能、教学过程与方法、情感态度价值观三方面拟定了本节课的教学目标:

1.通过“量一量”、“算一算”、“拼一拼”、“折一折”的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。

2.通过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想。

3.通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识、探索精神和实践能力。

(三)教学重、难点

因为学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是“内角”的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。

本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量、折一折、撕一撕、画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。

因为《课程标准》明确指出:“要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力”。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从“猜测――验证”展开学习活动,让学生感受这种重要的数学思维方式。

我以引入、猜测、证实、深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。

(一)引入

呈现情境:出示多个已学的平面图形,让学生认识什么是“内角”。(把图形中相邻两边的夹角称为内角)长方形有几个内角?(四个)它的内角有什么特点?(都是直角)这四个内角的和是多少?(360°)三角形有几个内角呢?从而引入课题。

【设计意图】让学生整体感知三角形内角和的知识,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。

(二)猜测

提出问题:长方形内角和是360°,那么三角形内角和是多少呢?

【设计意图】引导学生提出合理猜测:三角形的内角和是180°。

三)验证

(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度?

(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角?请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。

(3)折-拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。

(4)画:根据长方形的内角和来验证三角形内角和是180°。

一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。

【设计意图】利用已经学过的知识构建新的数学知识,这不仅有助于学生理解新的知识,而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角、长方形四个内角的和等知识联系起来,并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中,学生积极思考并大胆发言,他们的创造性思维得到了充分发挥。

(四)深化

质疑:大小不同的三角形,它们的内角和会是一样吗?

观察:(指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了,但角的大小没有变。)

结论:角的两条边长了,但角的大小不变。因为角的大小与边的长短无关。

实验:教师先在黑板上固定小棒,然后用活动角与小棒组成一个三角形,教师手拿活动角的顶点处,往下压,形成一个新的三角形,活动角在变大,而另外两个角在变小。这样多次变化,活动角越来越大,而另外两个角越来越小。最后,当活动角的两条边与小棒重合时,

结论:活动角就是一个平角180°,另外两个角都是0°。

【设计意图】小学生由于年龄小,容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用“角的大小与边的长短无关”的旧知识来理解说明。

对于利用精巧的小教具的演示,让学生通过观察、交流、想象,充分感受三角形三个角之间的联系和变化,感悟三角形内角和不变的原因。

(五)应用

1.基础练习:书本练习十四的习题9,求出三角形各个角的度数。

2.变式练习:一个三角形可能有两个直角吗?一个三角形可能有两个钝角吗?你能用今天所学的知识说明吗?

3.(1)将两个完全一样的直角三角形拼成一个大三角形,这个大三角形的内角和是多少?

(2)将一个大三角形分成两个小三角形,这两个小三角形的内角和分别是多少?

4.智力大挑战:你能求出下面图形的内角和吗?书本练习十四的习题

【设计意图】习题是沟通知识联系的有效手段。在本节课的四个层次的练习中,能充分注意沟通知识之间的内在联系,使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知,构建自己的认知结构,从而发展思维,提高综合运用知识解决问题的能力。

第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形、等边三角形等图形特征求三角形内角的度数。

第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形、钝角三角形中角的特征,较好地沟通了知识之间的联系。

第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的变化情况,进一步理解三角形内角和的知识。

第四题是对三角形内角和知识的进一步拓展,引导学生进一步研究多边形的内角和。教学中,学生能把这些多边形分成几个三角形,将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律,以此促进学生对多边形内角和知识的整体构建。

三角形内角和

引入:

猜测:

量——算

撕——拼

验证折——拼

深化

应用

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服