当前位置:网站首页 >> 作文 >> 2023年实际问题与二元一次方程组的教学反思(7篇)

2023年实际问题与二元一次方程组的教学反思(7篇)

格式:DOC 上传日期:2023-03-18 07:47:01
2023年实际问题与二元一次方程组的教学反思(7篇)
时间:2023-03-18 07:47:01     小编:zdfb

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧

实际问题与二元一次方程组的教学反思篇一

本节课的教学重点是让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型。教学难点是在探究过程中分析题意,由相等关系正确地建立方程组,从而把实际问题转化为数学问题。教学中,为了突破重难点,我主要让学生通过独立思考、自主探索、合作交流、估算验证等学习方式,在思考,交流等数学活动中,养成学生严谨的思维方式和良好的学习习惯,从而解决了生活中的三道实际问题:牛饲料问题,捐款问题以及红茶沟门票问题。在解决这些实际问题当中,我充分体现了以学生发展为本,让学生积极参与并且有效参与的新课程理念,在这样的理念指导下,我充分让时间留给学生,让讲台留给学生,让发现留给学生,注重学生情感价值观的培养,发扬教学民主,发挥了学生的`主动意识,因此在学生解决(探究1)牛饲料问题当中,学生能想出三种列方程组的方法,这是我意想不到的收获,这是我实施新课程理念中的最大成功,学生能用多种方法解题,扩展了学生的思维,让学生体验解题时有方法,方法多,方法好。从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人。

教学中,我还通过创设情境,使教学内容更加生活化,采用引发指导、多样评价、鼓励肯定等多种教学方法,增强学生的学习兴趣,让学生体验成功,从而培养学生分析问题、解决问题的能力。同时,我能改变传统教学的方法,跳出文本,活用教材。如:在探究1解决牛饲料问题中,我先让学生对平均每只母牛和每只小牛1天的食量进行估算,再寻求检验估算的方法,使学生明确把实际问题转化为数学问题,也就是用二元一次方程组解决,从而让学生体验方程组的实用性。同时,在这一过程中,让学生对估算与精确计算进行比较,从而明确估算有时会有误差,要想得到正确数据,需要通过用数学知识精算,让学生体会数学的应用价值,从而鼓励学生更好地学好数学。

不足之处:

1、时间把握得不够好,使得“感悟与反思”这一教学环节没有得以实施。

2、没有很好地关注极个别学生,以至于他们的积极性没能得以充分发挥。

总之,从整节课来看,学生的情绪比较饱满,思维比较活跃。我能较好地完成了教学目标,学生注意力比较集中,对重点内容也都能掌握,感觉比以前所上的这节课效果要好。所以我想无论什么样的课只要在备课时能真正的将“备教材”“备学生”“用学生的眼光看教材”三者结合起来,那么我们就能将每一节课都上成学生不仅能学到知识,同时能主动参与其中的课,让数学课不在枯燥,不在死板,让学生在愉悦的心情中学到知识,成为学生喜爱的课。

实际问题与二元一次方程组的教学反思篇二

在这节课之前的学习中,学生已经掌握了用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题。

这一节共安排了三个实际问题,这些问题比前面的问题更接近现实,数量关系相对比较隐蔽,因此这些问题的分析解决难度比以前的问题也要大些。这节课更为关注建立二元一次方程组数学模型的“探索”过程。它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据。

所以我觉得设计此课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用。教学中我应该根据学生的实际,选取学生熟悉的'背景,让学生体会数学建模的思想。在教学中应发挥自主学习的积极性,引导学生先独立探究,再进行合作交流。基于以上原因,这节课的设计我选择了“学案导学”法,就是是以学案为载体,导学为方法的教学活动,其显著优点是发挥学生的主体作用,突出学生的自学行为,倡导学生自主学习,自主探索,自我发现,是学生学会学习,学会合作的有效途径。其操作要领主要表现为先学后教、问题教学、导学导练、当堂达标。

课前预习阶段:教师将学案精心编写好后,于课前发给学生,让学生在课前明确学习目标,并在学案的指导下对课堂学习内容进行自主的预习。同时教师要对学习方法进行适当的指导,如要控制自己的预习时间,以提高效率;可以要求学生用红笔划出书中的重点、难点内容;带着学案上的问题看书,并标出自己尚存的疑问,带着问题走进课堂;逐步掌握正确的自学方法,有意识地培养自主学习的能力等等。教师要有意识地通过多种途径获得学生预习的反馈信息,以使上课的讲解更具针对性。

课后巩固深化阶段:课后教师要指导学生完成预习时有疑问而课堂上未能完成的问题,对学案进行及时的消化、整理、补充和归纳。同时教师要将希望生的学案收起,仔细审阅。对学案上反映出的个性问题及课堂上未解决的共性问题及时安排指导和讲解。做到教学一步一个脚印,以收到实效。

体现学案的人文性:名人名言、建议的口气、温馨的提示等等,我想这些对于创设民主、和谐的课堂氛围,激发学生探究的积极性都是十分必要的。

实际问题与二元一次方程组的教学反思篇三

列方程解应用题是学生的一个困难问题。大部分学生见到字多的题目就会大脑一片空白。这种不良反应很可能会延续到函数的实际应用。这个方面的教学反思是很有必要及迫切需要的。

笔者从事教学12年来,一直在反思应用题对于学生的困难之处。开始的时候,总是觉得原因在于学生文字理解能力差,看不懂题目。其实,这和语文的文字理解能力关系不大,主要是和学生对题中的数量关系的理解有关。

先举一个学生觉得很容易的例子:

例1、一个修路工程队已完成1700米的任务,预计每天修150米,还需多少天能完成2450米的总任务?

这个问题为什么简单?因为学生对每天修150米,x天修150x米这种倍数关系理解了,等量关系“已完成+预计完成=总任务”就好找了。

再举一个学生觉得有点困难的例子:

例2、小明有5角硬币和1元硬币共50枚,其中5角硬币比1元硬币的2倍多5枚。小明的两种硬币各有多少枚?他共有多少元钱?

学生易犯的设未知数的错误是:设两种硬币各有x枚。第二个错误是:设5角硬币有x枚,1元硬币有(2x+5)枚。如果解设对了,一般都不会列错方程。 这个题目绝对不存在阅读理解的困难,背景是学生很熟悉的。在教学中发现,几乎没有学生主动“设5角的硬币有x枚,则1元的硬币有(50-x)枚”。部分接受能力强的学生对这种设法接受很快,还有一小部分学生(学习态度较好)就不能接受。

我们再仔细想想,其实“设5角的硬币有x枚,则1元的硬币有(50-x)枚”所涉及数学思想与列一次函数关系式是很相似的,所以部分学生觉得有难度。倍

数关系很直接,学生易接受;这个关系用到一次逆向思维(加数=和–加数),所以难接受。

这个难点可以用列举表格的方法来解决:

这样,数量间的关系就很清晰的展示出来了。其实,在学习代数式时,学过用字母表示数,可是学生思维没有把两个知识点联系起来。

很多参考书都是这样总结列一元一次方程解应用题的'一般步骤的。

第一步:审题,用一个字母如x表示题目的未知数;

第二步:找出一个相等关系式;

第三步:根据等量关系列出一元一次方程;

第四步:解这个方程,求出未知数的值;

第五步:检验,作答。

结合学生觉得困难的例2分析一下,第一步就不好办了,因为有两个未知量,却只能设一个未知数;第二步找一个相等关系,其实题中有两个相等关系。有些困难学生,第一个步骤都不能顺利完成,所以觉得难!虽然老师们都觉得这是个超级简单的题,它确实难住了一些学习态度较好的学生。老师的工作就是帮学生解决困难,我们需要学着学生的思维方式去理解他们。

二元一次方程组的有关应用题在解设上没有什么困难,找相等关系列方程还是有很大困难。

也举个例子:

例3、2台大收割机和5台小收割机均工作2小时共收割小麦3.2公顷,3台大收割机和2台小收割机均工作5小时共收割6.5公顷。1台大收割机和1台小收割机每小时各收割小麦多少公顷?

这个题目已知数据很多,部分学生望而生畏。列出的方程常常丢三拉四。

参考书常这样总结列二元一次方程解应用题的一般步骤的。

第一步:认真审题,找出已知量、未知量(两个)以及等量关系(两个); 第二步:设未知量x,y;

第三步:根据等量关系(两个)列二元一次方程组;

第四步:解二元一次方程组;

第五步:检验,作答.

结合例3,分析一下学生觉得困难的地方。第一步,找出已知量、未知量容易,但找两个等量关系就不那么容易了。找不到等量关系,题就做不下去了。 我们可以发现,学生都是被“等量关系”难住的。不管设一个未知数也好,设两个未知数也好,只要找不到等量关系,方程就列不出来。

这个“害人”的等量关系还有一个致命伤——要用文字描述。以例3为例,请老师们自己把“等量关系”准确的表述一下,你会发现,几乎就是把题目重复了一遍。我们自己做这题,只会关注两个“共”字,不会把等量关系详细写出来。那为什么要学生去写或说呢?

反思,“等量关系”地位重要,但是它是否必须在第一时间出现呢?

以例3为例,对比“等量关系”在前和“等量关系”在后两种讲解方法。

例3、2台大收割机和5台小收割机均工作2小时共收割小麦3.2公顷,3台大收割机和2台小收割机均工作5小时共收割6.5公顷。1台大收割机和1台小收割机每小时各收割小麦多少公顷?

第一步:解:设1台大收割机和1台小收割机每小时各收割小麦x、y公顷,得: 第二步:找出相等关系: 大收割机工作量+小收割机工作量=总工作量 是不时所有学生都能准确找到这个等量关系能?

?2?2x?2?5y?3.2第三步:列出方程:? 5?3x?5?2y?6.5?

第四步:解出方程

第五步:检验,答

第一步:找出已知数据,建议学生在数据上作好标记(如圆圈)。

第二步:解:设1台大收割机和1台小收割机每小时各收割小麦x、y公顷,得: 第三步:分析每个已知数据和未知数的数量关系,顺序是从前往后。

如,看到第一个数据“2台”,想想它和x还是y有关系,它们之间存在那

种运算关系?学生很快会想到2x,接下来就是5y,这两个式子就是方程的雏形,再考虑2小时和3.2公顷,方程很容易就出来了:2(2x+5y)=3.2. 第四步:反思题中的“等量关系”

第五步:解出方程

第六步:检验,答

两种方法对比:

第一种方法,学生容易在第二步受困;

第二种方法把找“等量关系”分解为找“数量关系”,学生不那么容易受困;

第一种方法要求学生用文字描述“等量关系”,学生会觉得困难;

第二种方法在找数量关系的过程中,自觉地把等量关系用数学式子(方程)描述好了,学生不会觉得太困难;最后反思“等量关系”,加深对题目的理解。

“等量关系”在后的列方程解实际问题的步骤:

第一步:认真读题,找出已知量与未知量;

第二步:正确设好未知数;

第三步:按顺序初步分析各个已知量与有关未知数的关系;

第四步:在初步分析的数量关系之间找到等量关系,列出方程(组)并反思等量关系的文字描述;

第五步:解方程(组);

第六步:检验,答。

这样的步骤,把找“等量关系”细化为找“数量关系”,按照已知数据出现的顺序,一个一个分析,把文字理解和数量关系紧密结合在一起。这样的步骤对列一元一次方程和列二元一次方程组都合适。这与波利亚的怎样解题表的思路是一致的。

笔者的教学感受是,“等量关系”在后的方式比较适合中等以下层次的学生。在反复强调这样的步骤后,学生就从不能动手,到动手画圈,再到设好未知数;动手之后,就开始思考,从列一半式子到列出方程。

希望本文能起到抛砖引玉的作用,引起更多的老师来反思实际应用类的教学策略,研究出一些实用的方法。

实际问题与二元一次方程组的教学反思篇四

本节课是加减法解二元一次方程组的第2课时,是在学习过直接采用加减消元法解二元一次方程组的基础上,来进一步解决较复杂的二元一次方程组的求解问题的。我应用“先学后教,当堂训练”的教学模式,对教学过程精心设计,创设情境,复习设疑,引发兴趣;提出问题,学生讨论,分散难点;自主学习与小组互动、合作学习相结合,培养学生观察能力、合作意识和探索精神;以学生自学、互学为主,把课堂还给了学生,面向全体,促进课堂动态生成,让学生全面发展,课堂教学生命化,取得了良好的课堂效果,得到了教研组听课老师的好评。但其中也有一些不足。

1、组内帮扶作用发挥的突出。虽然大家都知道加减消元法,但有些同学不太明确怎样变形成可直接加减的形式,而通过组内帮扶,正好能帮助教师分散解决个别问题,从而大大提高了这节课的课堂效率。

2、易错点强调的较好(这是听课教师的评价)。在用减法消元时,学生最容易出错的地方是减数位置是一个整体,应该每一项都变号,所以在学生展示时,我让他写出了减的具体过程,也要求大家本节课做题时也要这么做,这样就减少了错误发生的概率。

1、课前复习提问不到位。本节课要继续研究加减消元的方法,在课前我只简单的.提问了可直接采用加减消元的.条件及如何加减消元,但从学生做题的过程来看,学生更容易在对方程的等价变形中出错,即利用方程的简单变形,两边同时乘以同一个数,学生往往忽略等式右边的常数项,不过,这一点我在课堂教学中提醒了一下,所以在以后的备课中我还要更细致些,多从学生的角度出发思考他们的易错点。

2、加减法解二元一次方程组的一般步骤出示时间有点早。我是在学生“先学”环节中引导学生总结得出,课后认为在“后教”环节的“更正”、“讨论”后让学生自己归纳出,更能体现追求以人的发展为本的“生命化课堂”教育新理念。

实际问题与二元一次方程组的教学反思篇五

常言道:举一反三,触类旁通。数学教学尤其如此。旨在于对一个数学知识点反复例举、反复引导、反复训练,进而对类似问题能够参考性的对比解决并且不断提升知识的认知水平。“消元——二元一次方程组的解法”这个课时的思想就是把未知数的个数递减而逐一解决。我在教学这个内容中得到如下反思。

一、在这节课的开始应该充分利用教材关于胜负问题的例子,让学生首先明白两个方程中的x都表示胜的场数,y都是表示负的场数,这个过程就是为了消除学生在以下的“代入消元法和加减消元法”中为什么能够互换的疑虑。这是个好的开端。

二、充分强调等式的变化。虽然这是个复习的问题,但是,让学生反复演练这样的等式变换是一个必要的过程,它将为后面的“代入法”顺利进行起到铺垫的作用。

三、在进行“代入消元法”时,遵循“由浅入深、循序渐进”的原则,引导并强调学生观察未知数的系数,注意系数是1的未知数,针对这个系数进行等式变换,然后代入另一个方程。在这个教学过程中,学生的学习难点就是当未知数的.系数不是1的情况,教师就应该运用开课前复习的等式变换的知识点:用含有一个字母的代数式表示另一个字母,引导学生熟练进行等式变换,这个过程教师往往忽略训练的深度和广度,要引起注意把握训练尺度。

四、在进行“加减消元法”时,难点是:相同未知数的系数不相同也不是互为相反数的情况。基于此,教学原则也应该是“由易到难、逐次深入”的原则。教师应该先让学生熟悉简单的未知数相同或互为相反数这类题目的加减消元法则和原理;继而认真展示成倍数关系的未知数的系数;然后出示一些比如:3x-5y=10,2x+10y=1,等等的问题,提示学生怎样使相同未知数的系数相同或互为相反数,这时教师要帮助学生认真分析,强调遵循求几个数最小公倍数的原则,使它们相同未知数的系数变成为它们的最小公倍数,然后进行加减消元法去解决问题。

这就是我在这个课程教学的一些反思。

实际问题与二元一次方程组的教学反思篇六

解二元一次方程组”是“二元一次方程组”一章中很重要的知识,占有重要的地位、通过本节内容的教学,使学生会用代入消元法和加减消元法解二元一次方程组;了解“消元”思想。

教学后发现,大部分学生能掌握二元一次议程组的解法,教学一开始给出了一个二元一次方程组。

提问:含有两个未知数的方程我们没有学习过怎样解,那么我们学过解什么类型的方程?

答:一元一次方程。

提问:那可怎么办呢?

这时,学生通过交流,教师只要略加指导,方法自然得出,这其中也体现了化归思想,教学的最后给出了一个二元一次方程组,同样也没有学过它的'解法,那学过什么类型的方程组,这时又怎么办呢?与教学开始时方法一样,但这时不需点拔、指导,学生按“消元”“化归”的思想,化“三元”为“二元”,化“二元”为“一元”,这对学生今后独立解决总是无疑是种好的方法。

从学生作业反馈,对两种消元法的步骤和方法能很好的掌握。但是学生解题中错误较多。问题出现在进行代入消元后的一元一次方程解错了。如去分母时忘了用最小公倍数乘遍每一项,移项要变号,数与多项式相乘要乘遍每项。这样导致整个方程组的解错。看来需要对一元一次方程的解法进行次回顾,尤其是解方程中的易错点。而对于加减法应让学生明确方程组如果既能用加法消元又能用减法消元的情况下尽量用加法。毕竟加法不容易出错。对于减法尤其是减数是负号时是学生解题的易错点,除了用正面的解题进行板演讲解外,还应该设置改错题,让学生找出错误所在,加深印象。

实际问题与二元一次方程组的教学反思篇七

利用二元一次方程组解实际问题是在教学了解二元一次方程的基础上,开展的教学,通过这一节知识的学习进一步培养学生分析问题、解决问题的能力,培养学生的方程思想,养成仔细读题、认真审题、细心解答的良好习惯。

主要通过学生课前自学,小组合作学习,课上小组合作交流学习,小组展示学习成果,教师结合学生自学及交流情况适当引导,并归纳总结解答方法。课堂当堂巩固练习+课后个别辅导讲解。

教学时注重了学生的课前预习,绝大部分学生都能按要求自习学习内容,但仍有部分学生没有按要求自学,有一部分理解能力较低,甚至读不懂句子包含的含义,更谈不上提取其中的有用数学信息。还有少数学生将两个未知数设出来后没有找出适当的数量关系,甚至把两个关系笼统的套在一起列出一个象二元一次的'方程,但根本没法解,还有个别同学在解方程时解答出错,有部分学生没有按要求检验,甚至没有养成答题的良好习惯。

1、强调读题的重要性,反复读题,直到读懂为止,找出题有已知条件和所求问题。

2、找准等量关系式,找象“;。.”这样的标点符号,从中间划开,符号前为一个等量关系式,符号后面为一个等量关系式。

3、解设未知数时根据题意设两个未知数,根据等量关系式表示出相关的量并列方程组解答。

4、解完题后用大括号表示结果,并在稿纸上检验,一看方程解答是否正确,二看结果是否符合题意。

反思:学生在解题过程中出错很正常,做的题多了,就会知道自己容易在什么地方出错,改正即可。但作为老师必须要有训练意识,培养学生严谨的思路和方法,同时提供足够的练习时间和练习量。

5、检验并写出答案。

6、配套问题学生较难理解,应结合题意,表示出相关量,根据物件配套比例,适当配平,并列方程。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服