人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
商的变化规律的运用教学反思篇一
1、结合实际改变教材内容顺序,使学生容易理解、掌握。
教材内容是先是商变化规律,然后才是商不变规律,但在实际教学中,商变化规律是难点,学生不容易发现与表述,相对来说,商不变规律更容易探究,也更容易表述。所以在设计时我把两个部分颠倒过来讲,先讲商不变规律,只有先使学生理解、掌握商不变规律,学生才能更好的理解、掌握商变化规律。
2、以游戏形式导入,提高学生学习兴趣。
为了激发学生学习兴趣,探究商不变规律,一开始我就给学生讲了“猴子分桃”的故事。
3、结合生活中实例,探究商不变规律。
为了探究商不变规律,我通过“猴子分桃”的故事,使学生明白,“桃子个数乘几,猴子只数也乘几(0除外),每只猴子平均分到的桃子个数不变”。学生自然结合除法算式,得出结论:被除数乘几。除数也乘几(0除外),商不变。接着,我让学生反过来看,即桃子个数除以几,猴子只数也除以几(0除外),每只猴子平均分到的桃子个数不变。于是,另外类似的一个结论“被除数除以几。除数也除以几(0除外),商不变”学生也得出来了。
4、以教师位主导,学生为主体,充分体现“活力课堂”。
我采取书上的例题中的除法算式,探究、揭示商变化规律。抓住“什么没变,什么变了,怎么变的”这一主干线,完全放手让孩子们自己迁移前面(商不变规律)方法主动去观察,并口述规律,得出结论,充分体现“以学生为主体,教师为主导”。
当然,这节课也有一些不足的地方,主要体现如下几个方面:
1、时间安排的不太科学。
商不变规律是重点,也是难点,只花不到半节课的时间让全班学生弄懂是不现实的,在学生对商不变规律还是似懂非懂的前提下,就让学生探究商变化规律太过勉强,学生自然而然“囫囵吞枣”,无法当堂消化。如果分两节课教学,第一节探究商不变规律,第二节课探究上变化规律,效果会更好。
2、没有完全放手。
通过本节课的教学,尽管只有少数学生进行探究发现汇报,但还是让我深深体会到学生的潜力是无限的,教师只要稍微点拨,真得大胆放开手脚,让学生在知识的海洋中尽情的畅游。“授人予鱼,不如授人予渔。”在教学中,教师教的应该主要是学习方法。
总之,一节课下来,留给我很多值得继续保持的方面,也留给我一些要注意改进的地方。扬长避短,我还需要在今后的教学生涯中多学习,多反思,多实践,使自己的教学水平得以真正提高。
商的变化规律的运用教学反思篇二
“商的变化规律”是人教版四年级上册第五单元教学内容。教材内容分两部分呈现,第一部分是商的变化规律,第二部分是商不变规律。在呈现商的变化规律时,教材的呈现方式只呈现了两组式题,让学生计算下面两组题,你能发现什么?而把重点放在商不变规律的探究上。
但实际教学中,商的变化规律才是难点,学生更不容易发现与表述,相对来说,商不变规律更容易探究,也更容易表述。所以在设计时我采用三个层次,扶放结合,以使学生充分地理解商的三个变化规律。抓住“什么没变了,什么变了,怎么变的”这一主干线,在揭示第一组规律时采取教师引导学生观察得出结论的方法,而在后面两组探究规律教学时则完全放手让孩子们自己迁移前方法主动去观察,并口述规律,得出结论,充分发挥师生双主体作用。但在实际教学过程中仍有许多的环节处理得不够得当,导致学生的体验不深刻,教学时间不够,第三组规律没有来得及探究。
反思有以下几点欠妥:
本节课在积的变化规律的基础上,学生对乘法中各个量之间的关系及其变化规律有了感知,有一部分同学能够很快迁移过来,但也有一部分同学不能或不会迁移过来,因此,不能让一部分同学的回答来代表全体同学的回答。而是让他们回答过后,多让其他的同学来说说相关量的变化规律。可以同桌说,说的时候可以让他们按照一定的格式。
在学习商不变的规律时,让学生通过猜想,被除数与除数怎么变化,商才会不变?学生通过之前的学习,能够很快地举例加以验证,但我由于时间关系,没有多举几个学生的例子加以说明,让学生说出自己的想法,只是匆匆而过,虽然学生大多能举出例子来加以验证,能够得出:被除数与除数都要扩大或缩小相同的倍数,商才能不变。但因为确少实例的支撑,得出的结论就显得有点苍白,而且对学生印象不够深刻。
本节课是新课,要学习商的三个变化规律,教学的容量是非常大的。因此在练习的设计上不易过多、过难,以使学生不适应。本课在学习完前两个规律后,出示了有关的六道题,主要是被除数与除数、商的之间的变化情况,因为确少了具体的算式的支持,对学生来说比较抽象,因此虽然花费了不少的时间,但效果不够好。
我想作为教师在吃透教材的同时,要多从学生的角度出发,以他们的兴趣水平、理解能力为出发点去精心安排教学内容、设计教学方法,才能使学生少走歪路,学得容易、学得轻松、学得牢固,真正达到减负增效的目的。
商的变化规律的运用教学反思篇三
《商的变化规律》这部分内容是在学生熟练掌握除数是两位数商一位和两位的笔算除法的基础上教学的,让学生掌握这部分知识,既为学习简便运算作准备,也有利于以后学习小数除法、分数和比的有关知识,是小学数学中十分重要的基础知识。
本节课主要采用了发现式教学法,小组讨论式教学法。教师以组织者、引导者和合作者的身份创设和谐的教学环境,实现教与学的和谐多元化互动,通过启发、引导学生积极参与到整个教学中去。学生一方面尝试发现,体验创造的过程;另一方面也可以增强合作意识,在小组交流,全班交流过程中相互学习、相互借鉴,逐步归纳出商的变化规律。完成了教学任务,实现重点突出。
兴趣是学生积极主动地获取知识,形成技能的重要心理动力。托尔斯泰亦说过:“成功的教学所需要的不是强制,而是激发学生的兴趣。”因此,在数学教学中,我们要根据小学生的认知规律和年龄特征,激发学生的学习兴趣,促使他们主动学习。听故事小学生都喜欢,在本课教学中,我就利用了这一点,给学生讲了《猴子分桃》的故事,调动了学生学习兴趣,学生都投入到“猴子和猴王哪一笑才是聪明的一笑“的思考当中,学习积极性非常浓厚,最后顺利地进入了本课的教学中。
在教学中,我设计了让他们独立思考,同位交流和小组合作几个环节,让学生通过前面的学习,合作归纳出商不变的规律,并让学生展示小组合作的成果,体验探究与成功的快乐,真正成为学习的主人。学生自始自终的参与了学习的全过程,数据都来自与学生,比较真实,让学生参与发现规律、探究规律、总结规律的过程中,让学生成为学习的主人。同时让学生在观察、思考、尝试、交流过程中,实现师生互动、生生互动。促进学生主动参与,由“要我学”变成了“我要学”。
从让学生学习发现第一个规律时,我就要求学生按一定的顺序去观察,这样学生的思路就清晰了,很快找到被除数不变时商与除数变化特点,在学生汇报交流时,又通过多媒体课件的演示再次提醒大家按一定的顺序汇报,这样一来孩子们的思维顺畅了,表达也准确了。同时也为下一步的观察奠定了基础。
商的变化规律的运用教学反思篇四
“商的变化规律”是人教版四年级上册第六单元教学内容。教材内容分两部分呈现,第一部分是商的变化规律,第二部分是商不变规律。在呈现商的变化规律时,教材的呈现方式只呈现了两组式题,让学生计算下面两组题,你能发现什么?而把重点放在商不变规律的探究上。
根据以往的经验,感觉商不变规律更容易探究,也更容易表述。而商的变化规律才是难点,学生更不容易发现与表述,所以在设计时我把“商不变的规律”单独放在第二课时,如此也可以引导学生自主探究,进而有时间去深度探究。第一课时先探究被除数不变时,商和除数的变化规律,再探究除数不变时,商和被除数的变化规律,探究前两个商的变化规律时,由于前面探究过积的变化规律,学生有了一定的经验积累,会通过举例子的方法探究,因此我采用扶放结合,以使学生充分地理解商的前两个变化规律。抓住“什么没变,什么变了,怎么变的,同时商是如何变的?”这一主干线,让学生通过计算,比较被除数和除数的变化,在揭示第一组规律时采取教师引导学生先从上往下观察发现规律,然后让学生举例去验证所发现的规律:除数不变时,被除数乘几,商也乘几,也就是说二者的变化一致,可以说是“朋友关系”,在这个环节,我着重引导学生通过他们之间的交流或补充,比如乘的数不能是0,如此逐步概括归纳,最后自己总结出规律:除数不变时,被除数乘几,商也乘几(0除外),在此基础上再让学生从下往上观察刚才所研究的例子,引导学生归纳概括:除数不变,被除数除以几,商也除以几(0除外),最后启发学生再归纳概括积的变化规律时,可以把两个规律归纳在一起,刚才你们发现的这两条商的变化规律能否也归纳在一起呢?请和同桌先说一说,然后汇报交流。让学生在计算验证的基础上通过讨论交流,最后自己归纳概括出规律,这个过程是学生计算、思考、验证、交流等亲身经历的,里面融入了更多学生的思维碰撞,可以说是鲜活的、灵动的、丰富多彩的。这样的课堂才是有活力的课堂,是有生命的课堂。
在第二组探究商的变化规律教学时,我完全放手让孩子们自己迁移前面的方法主动去从上往下观察,并口述规律,举例验证规律,进而得出结论,充分发挥师生双主体作用,继而通过和第一组规律进行比较,发现:被除数不变时除数乘几,被除数反而除以几,此时的除数和商的变化方式刚好相反,可以说是“敌人关系”,如此通过举例验证,同时采用打比方的方法,更容易让学生理解并记住这个规律。紧接着,我引导学生从下往上观察来研究商的变化规律,最后在小组交流补充下归纳概括出商的第二条变化规律:被除数不变时除数乘(或除以)几,被除数反而除以(或乘)几(0除外)。
这节课,在实际教学过程中仍有许多的环节处理得不够得当,导致学生的体验不深刻,教学时间不够充分,反思有以下几点欠妥:
在学生举例子研究的过程中,我是唯恐完不成这节任务,对于少数困难生来说,节奏有些快,他们还没来得及思考,甚至这个例子还没看清被除数或除数乘了几,老师就要求总结概括规律。学生比较被动。
正是因为节奏快,尽管学生所举的例子才单一,感悟怎会深刻?虽然本节课在积的变化规律的基础上,学生对乘法中各个量之间的关系及其变化规律有了感知,有一部分同学能够很快迁移过来,但也有一部分同学不能或不会迁移过来,因此不能让一部分同学的回答来代表全体同学的回答。而是让他们回答过后,多让其他的同学来说说相关数的变化规律。可以同桌说,说的时候可以让他们按照一定的格式,如被除数不变,除数从xx到xx乘(或除以)了几,商xx,这样的话,多比较几题,多说几遍,中下学生的印象也就深刻起来。另外有个别学生为了省事,不是通过计算来验证规律的,而是直接运用规律,得出答案,缺少了探究的过程。
本节课是新课,要学习商的前两个变化规律,教学的容量比较大。因此在练习的设计上不易过多、过难,以使学生不适应。本课在学习完前两个规律后,出示了有关的5道选择题,主要是被除数与除数、商的之间的变化情况,因为确少了具体的算式的支持,对学生来说比较抽象,因此虽然花费了不少的时间,但效果不够好,应该让学生在熟练掌握商的变化规律的基础上去拓展延伸,同时引导学生通过举例子的方法来观察商的变化情况。从而提过学生应用知识的能力。
我想作为教师在读懂教材的同时,也要读懂学生,要多从学生的角度出发,以他们的兴趣水平、理解能力为出发点去精心安排教学内容、设计教学方法,组织数学学习活动,精选适当的练习题。比如本节课通过举例探究、猜想、然后再举例验证的方法,让学生经历规律的探究过程,在不断交流中,不断补充、完善,最后归纳概括规律水到渠成,如此才能使学生少走歪路,学得容易、学得轻松、学得牢固、学得快乐,真正达到减负、增效的目的。
商的变化规律的运用教学反思篇五
《商的变化规律》这部分内容是在学生学习了积的变化规律和熟练掌握除数是两位数商一位和两位的笔算除法的基础上教学的,让学生掌握这部分知识,既为学习简便运算作准备,也有利于以后学习小数除法、分数和比的有关知识,是小学数学中十分重要的基础知识。教学《商的变化规律》这一课后,感慨颇多,收获也很大,细想这节课,有成功,亦有失败。
成功之处体现在以下几个方面:
提高学生学习兴趣。本节课我创设了西游记中孙悟空分饼给猪八戒的故事情境。由于学生对西游记中的孙悟空和猪八戒的人物性格熟悉和喜爱,很快就被老师的故事所吸引。孙悟空到底是掌握了什么规律把猪八戒糊弄过去的呢?带着这个问题,学生的学习热情被点燃。
本节课教材先是安排学习商的两个变化规律,然后,学习商不变的性质。然而商的两个变化规律比较抽象,学生掌握起来有点难度,再去学习商的性质就会显得有点吃力。我课前认真研究教材,改变了教学顺序。首先通过故事情景——引出商不变的规律,进而教学“除数不变”、“被除数不变”的规律。在得出“只有在被除数和除数同时乘或同时除以一个相同的数(0除外),商不变后”的规律后,再来教学“只有除数变,被除数不变,商的变化规律”和“只有被除数变,除数不变,商的变化规律”就更容易了。
但是在教学过程中,还是出现了几点值得反思的地方:
例如:在出示完导入环节的故事后,我是这样过度到新授环节的:“孙悟空是掌握了什么规律把孙悟空糊弄过去的呢?我们今天就来学习商的变化规律”。这样的过渡语言,显得很生硬,思维跳跃性很大。经过推敲后,我将过渡语言改为:“孙悟空是掌握了什么规律把孙悟空糊弄过去的呢?我们就一起来算一算,请使出你们的火眼金睛,一起来寻找这里面藏着的规律。”这样的语言,前后连贯,又能很好地激发学生的求知欲,有利于调动学生的学习热情。
数学课程正是由于它的严谨性而富有魅力。在以后的教学中,我要认真备课,仔细推语言,力求做到准确简洁。
为了完成教学任务,我没有给足时间让学生参与发现规律、探究规律、总结规律。没能让学生成为学习的主人。所以整堂课下来,学生的学习积极性不高,教学目的没有很好地达成。数学课程标准中提到我们老师不仅要注重数学学习的结果,更要注重数学学习的过程。通过此次的公开课,我对这句话有了更深的体会。
我觉得三个规律在一堂课中教学完显得仓促,虽然商不变规律是重点,但被除数不变的规律是难点,它弄清楚了,下面的学习,就轻松多了。课后我想是不是将这一节课分为两个课时,将商的变化规律与商不变的规律分为两节课来教,同时在商不变的规律中还可以加入被除数、除数末尾有零的时候竖式的简化,这样就能够使每一部分的内容都足够完整,使学生获得的知识足够清楚明白。
老师应给学生足够的探索空间,把课堂还给学生。
本节课的三个规律比较抽象,在以后的教学中可以为学生创设三个不同的问题情境,放手让他们自己去尝试、探究、猜想、思考,留给学生足够的思维空间。不求十全十美,只求一得。一是“星期天,王老师到体育用品商店去买球,乒乓球每个2元,足球每个20元,篮球每个40元,用200元买其中一种球,可以分别买多少个?”,二是学校举行的冬季趣味运动会“定点投篮”项目中,每8人一组,16人可以分成多少组?160人呢?320人呢?放手让学生自己去探索,每个学生自由计算、思考,小组讨论总结,最后进行全班汇报。学生通过计算、发现、交流、辨析、整合,发现“在除法里,当被除数不变,除数扩大(缩小)几倍,商就缩小(扩大)几倍”。当除数不变,被除数扩大或缩小几倍,商也同时也同时扩大或缩小相同的倍数”。三是“孙悟空分桃”,
当学生回答:“素悟空为什么笑?”之后,我让学生说出原因(算式),随机板书算式,然后让他们分小组讨论,把自己的发现在小组内交流,最后全班一起总结出“在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变”。整个过程比较真实,让学生参与发现规律、探究规律、总结规律的过程中,让学生成为学习的主人。同时让学生在观察、思考、尝试、交流过程中,实现师生互动、生生互动。促进学生主动参与。
总之,这节课,使我充分感受到在教学的过程中,教师要多为学生创造交流和思考的时间和空间,把学习的主动权真正地还给学生。让学生在一种宽松的、民主的氛围中去学习,感受学习的快乐,提高学习的兴趣。这样的课堂,才是学生真正喜欢的课堂;在这样的氛围下学习,才是真正快乐的学习。
最后,感谢熊锦老师给我的课堂教学提出的宝贵意见。在今后的教学工作中,我会努力不断地去学习、去尝试,不断改变教学方法和授课模式,成为一个研究型和专业型的教师。
商的变化规律的运用教学反思篇六
本节课的变化规律是第五单元的教学内容,前边在第三单元中学生已经学习了“积的变化规律”,为这节课的教学打好了知识基础。我抓住并利用了这一知识基础:“我们都知道乘法和除法有着密切的关系,既然乘法中有这样的规律,在除法中是否也存在着类似的规律呢?”一句话引起了大家的思考,学生很自然的由乘法中的变化规律类推出了除法中的变化规律,既准确地找到了新知的切入点,合理的运用了知识的正迁移,又为后边学习活动的开展奠定了一个探索研究的基调——这些大胆的猜测是否正确呢?需要我们进一步的验证。这就将整节课的落脚点定位在了培养学生解决实际问题的能力上,而非仅仅是知识点的掌握上。
学生自学后,让学生经历了三次验证过程,看似有些重复,但细品起来,每次的侧重点都有所不同:第一次是使学生知道例举法是一种行之有效的研究方法,使用此方法时应尽可能多的举例,这样才有可能避免偶然性,提高正确率;第二次是让学生有意识的经历挫折,我们的猜测不总是正确的,可以通过实验来修正猜测,得出正确结论;第三次是提醒学生当研究思路出现偏差时,应学会及时调整,积极寻找新的思路继续研究,直至得出结论。三个侧重点层层递进,紧紧围绕着培养学生的探究能力展开。
在这里,知识的掌握和运用不是最终目标(其实学生在这种积极主动地研究状态下、在经历“做”的过程中,自然理解掌握了被除数、除数、商这三者的变化规律,且会印象深刻),而引领学生经历研究问题的一般过程,并在过程中培养学生认真观察、大胆推测、勇于实践、科学严谨、不轻言放弃等良好的学习品质和数学素养,是教师的出发点和落脚点。这正是新课标所倡导的数学教育理念:“使学生经历数学活动过程,获得对数学的理解的同时,在思维能力、情感态度与价值观诸方面得到发展”。
总之,本节课在教学设计时牢牢地抓住了两点:一是利用好新旧知识之间的联系和乘法中积的变化规律的迁移,引起学生的学习情趣和激情,提出猜测,展开教学;二是不仅仅将课堂教学的重点落在三个规律上,而是落脚到通过教学活动,培养学生的数学品质上,将这种“猜测、验证得出结论”的数学研究方法深入到每个学生之中,真正让学生成为一名数学知识的猜测者、研究者、发现者,从而获得学习数学的乐趣。
商的变化规律的运用教学反思篇七
《商的变化规律》是四年级上册第六单元《除数是两位数的除法》的最后一部分内容,《商的变化规律》这堂课的内容跟以往的教材有很大的不同,在小学阶段,商不变的性质是一个很重要的内容,给今后分数和比的性质打下坚实的基础。
一、适当的调整教学内容。
这部分知识对于学生来说比较困难,特别是被除数不变,除数和商的变化,及除数不变,被除数和商的变化这两部分内容对于学生来说比较难于理解。所以整节课我做了以下调整:先学习“商不变的性质”延伸到商的变化规律一、二,学生自始自终的参与了学习的全过程,数据都来自与学生,比较真实,让学生参与发现规律、探究规律、总结规律的过程中,让学生成为学习的主人。独立思考是小组合作的前提,只有经过独立思考才能进行有效的合作。在教学中,我设计了让他们独立思考,同位交流和小组合作几个环节,让学生通过前面的学习,合作归纳出商不变的规律,并让学生展示小组合作的成果,体验探究与成功的快乐,真正成为学习的主人。
二、充分的利用计算中的现象,让学生明白商的变化规律。
每一种知识规律的形成,都离不开学生的实践,所以在教学过程中,充分利用计算,让学生在计算、分析、对比中,发现总结出商的变化规律,然后再利用规律进行判断、计算。
整节课下来,虽然在教师的引导下,三条规律学生能够有所感知,有所了解。但掌握得并不是非常好。似乎教学内容太多,学生一下子消化不了,如果能对教材进行分化处理,将三条规律分两节课来上,那么学生分出牢固掌握商不变的性质。