人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
新教材基本不等式教学设计篇一
创设情景提出问题播放一段风光片:金色的海滨,松软的沙滩,人们的身后是一串串大小不等、深浅不同的脚印。
让学生同时捏住圆珠笔的笔尖和笔帽,认真体验手的感觉。
3.鼓励学生从看到的、感觉到的现象中,提出自己想知道的问题。通过观察和体验,提出自己想知道的问题,如
问题一:沙滩上为什么会留下脚印?
问题二:脚印的深浅为什么不同?
问题三:捏住笔时,手为什么会感到疼痛?
问题四:为什么捏笔尖的手感觉更疼一些?
……之所以创设这样的教学情景,一是帮助学生消除压力都是由重力产生的、大小总等于重力的误区;二是调动学生的多种感官,感受压力的存在与作用效果的不同;三培养学生的问题意识。
自主探究解决问题1.解决初步问题
引导学生根据生活经验及知识储备,初步解决上述问题。
2.明确探究课题:
教师引导:既然上述现象都是由于压力在物体上产生的效果不同引起的,那么现在,你最想了解的问题是什么?
3.猜想假设
引导学生根据问题情境或生活经验进行猜想。
4.设计实验
引导学生回顾“探究滑动摩擦力大小与哪些因素有关”的实验,确定实验方法:控制变量法。
5.进行实验
巡回指导,鼓励学生从课桌上已备的器材或身边的一些物品中自主选择器材,来验证猜想。
6.分析论证
引导学生对实验现象进行分析。
7.交流评估
鼓励各小组展示各自的实验方案,并对自己及他人的实验提出评估意见。
8.教师小结
表扬各小组的创新设计,提出改进意见或期望,并板书实验结论。经讨论交流,使学生认识到沙滩上留下脚印是因为沙滩受到人的压力,手感到疼是因为手受到了笔的压力,而脚印的深浅不同,手的疼痛感觉不同,都是由于压力在物体上产生的效果不同。
提出探究课题:压力作用的效果跟哪些因素有关?
大胆猜想并交流
经讨论,明确实验方案:让受力面积一定,研究压力作用效果与压力大小的关系;让压力一定,研究压力作用效果与受力面积的关系。
相互切磋,合理分工,共同实验,研究发现。
分析归纳,得出结论。
各小组边演示边讲解, 相互交流、取长补短。
倾听、感悟。根据新课标的要求,这里不需对压力下定义。
层层引导、步步深入,学生从自己的求知愿望出发提出了探究课题,必能激发学生的探究热情。
培养学生的发散思维。
“授之以渔”,注重对学生进行方法指导
充分发挥学生的想象力和创造力,体验“瓶瓶罐罐当仪器,拼拼凑凑做实验”的乐趣。
培养学生的归纳分析能力
培养学生的合作交流意识及语言表达能力。
使学生充分体验成功的喜悦。
温故、知新
建立
概念1.围绕实验结论,引导学生思考:当物体表面受到的压力和受力面积均不同,将如何比较压力的作用效果?
2.引出压强的概念:
3.利用课件将速度的概念与压强概念进行对比,运用类比的方法找出压强的公式和单位。
4.简介帕斯卡在力学方面的突出贡献。
5.例题应用
课件出示课本例题,巡回指导,及时反馈小组讨论,寻找方法:比较单位面积上受到的压力。
理解基础上记忆。
思考并回答。
倾听并感悟。
学生独立解答。由浅入深,使学生逐步建立压强的概念。
渗透类比及比值定义的学习方法。
激发学生对科学家的崇敬和热爱之情。
加深对压强概念的理解。
学以致用指导生活1.引导学生将桌上的图钉按入木块,体验后,提出问题:你希望钉尖对木块的压强大些还是小些?希望钉帽对手的压强大些还是小些?
2.课件展示8组生活图片,引导学生分析:
(1)哪些生活场景需增大压强?人们通常用哪些方法增加压强?(2)哪些生活场景需减小压强?人们通常用哪些方法减小压强?
3.小游戏:全体立正,如何迅速增大你对地面的压强?认真体验并交流
学生根据已有的生活经验,进行分类和归纳。
有的迅速改为单腿站立,有的脚尖踮地,有的迅速抱起桌上的书、书包等物品……使学生对生活中增大压强和减小压强的意义有了深刻的感知
充分体现了物理知识与生活的密切联系,培养学生热爱科学、热爱生活的情感。
既考查学生的知识迁移能力,又很好的调节了课堂气氛。
畅谈收获系统升华引导学生回顾本节课的学习过程,从知识与技能的获取、过程与方法的体验、情感态度价值观的提升三方面畅谈自己的收获和体会。一起交流,互相促进,共同提高。强化过程与方法的体验,促进情感的提升。
课后延伸思维拓展课件展示汽车超载、国道破坏的视频资料,引导学生课后通过采访、调查、网络查询等多种途径,收集相关数据和信息,分析道路破坏的原因,寻找解决问题的方法措施,以“国道不堪重负”(或其他)为题,写一篇科学小论文。培养学生获取和处理信息的能力,体现“从生活走向物理,从物理走向社会”的理念。
【板书设计】
第一节 压强
一、探究压力的作用效果
压力一定,受力面积越小
受力面积一定,压力越大三、增大压强:f大或s小
减小压强:f小或s大
二、压强
定义:单位面积上受到的压力
1pa=1n/m2
新教材基本不等式教学设计篇二
讲授了《科学探究:液体的压强》,在教后我体会很深,现结合这次课程培训,将教学体会总结如下:
在本节课中,体现了新课改教学的三维目标:知识与技能、过程与方法、情感态度与价值观,让学生经历了“观察----猜想----探究-----应用”的物理科学探究过程,在探究过程中我比较恰当的把握学生的经历水平、反应水平、领悟水平。在教学中基本做到了三讲三不讲,注重了规律、思路、技巧和方法的教学。特别是在科学探究方法上,注重了利用已有知识进行理论推导,又用实验验证结论的可靠性。结果是异曲同工,从而使得学生综合运用知识和分析解决问题的能力大大提高。
此外,我觉的在各个环节的过渡上基本做到了衔接紧密。
学生在学习过程中,学得相对轻松,能从兴趣出发,敢于发挥自己的想象力,敢于发表自己的见解,组内积极讨论,做到在交流中学习,在实验操作中认真谨慎,分析论证结论比较准确。
本节课的不足之处。
本节课的教学总体是成功的,但仍有不足之处:
1、在制作课件上不够完美。
2、在理论推导过程中应给学生再多一点时间,充分让学生进行展示。
3、在知识的应用,特别是拓展应用-----液体压强的传递这个环节,鼓励学生联系生活实际多举例,或老师提供给学生更多的素材。
4、在有些环节中我的语言不够简练。
5、这节课的内容比较多,在处理连通器和帕斯卡原理时时间比较紧张在授课时将本节课分为两节课,我自己觉得对这一部分处理的不太好。
努力的方向:
如果再让我讲这节课,我会进一步研究教材,充分了解学生的学情,从学生的兴趣和已有的更贴近的感知水平出发,设计更合理的教学环节,在教授过程中进一步完善“自主高效,多维互动”的开放式创新性课堂教学体系;删去无效课堂环节,进一步突出重点,突破难点,突出因材施教;使师生的合作学习活动更默契。加强自身素质的提高,为学生创设更感兴趣的情景,使学生从身边的生活实例中学习科学文化知识,再利用所学知识从物理走向社会。同时还要加强学生思维的发散,使之学习、掌握、应用多种科学探究方法,做到“授之一渔胜过授之一鱼”;在学生的探究实验中要加强对学生的实验指导,使学生在“做中学,学中做”的轻松气氛中学习;注意学生的差异,做到因材施教,全面提高课堂效益。
新教材基本不等式教学设计篇三
【教学内容】
人教版五年级数学下册第四单元例3
【教材简析】
《约分》是人教版数学第十册第四单元第四部分的内容,约分是分数基本性质的直接应用。新课标指出:义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,为学生的全面发展创造条件。要尊重学生身心发展特点和教育规律,转变教育观念,积极实行启发式和讨论式教学;激发学生独立思考和创新意识,让学生既学会知识,又学会学习,使学生生动活泼积极主动地发展。
【教学目标】
1、使学生理解约分和最简分数的意义,掌握约分的方法,能够正确地进行约分。
2、培养学生综合运用已有知识解决问题的能力。
3、渗透恒等变换思想。
【教学重点】
掌握约分的方法。
【教学难点】
很快看出分子、分母的公约数,并能准确地判断约分的结果是不是最简分数。
【教学用具】
多媒体课件、分数卡片
【教学过程】
一、情境导入,复习巩固,激发兴趣。
1、口算:3.8×2 = 12.5×0.8= 1.8÷9 =
5.4÷0.6 = 4-0.7 = 8.2+2=
2、【设计意图:孩子们对游泳有兴趣,以谈话导入,引发大家的学习兴趣,紧接着回顾求公约数和分数的基本性质,明确又简单,为理解最简分数和掌握约分的方法作好准备。】
二、理解最简分数及约分的意义
【设计意图:在提出了学生变分数的小组合作的要求后,老师参与其中,予以适当的点拨,让学生明确活动的要求,促使他们的思维处于积极的良好状态,在合作中共同探究学习,并学会观察,相互提点,发现约分的实际概念。让学生在老师例举中找到约分的概念,尝试着进行概括,并从观察的分子、分母能否再变小,提出了最简分数的概念,通过举例、练习达到巩固的效果,这样本课的重、难点就迎刃而解了。】
三、自主探索,合作交流,总结方法。
【设计意图:在自学的过程中,学生们从书本上形成知识表象,对自学部分,及时进行反馈,并予以指导,特别在学习约分的两种形式时,教师的一步步板书,清晰明了,让学生在头脑中形成每一步的过程,形成的影象。】
四、巩固练习。
【设计意图:创设生活情景,提供了一些现实的学习材料,把书本知识与学生的日常生活联系起来,使学生感受到数学来自生活,并不抽象;学好数学,为生活、生产服务,学数学真有价值。题目充满趣味性。在引导学生积极观察、思考、联想、诱发学生的创新因素时,应注意引导学生克服固定的思维模式,鼓励独创性地发现知识的规律和发表自己的独特见解。】
五、提升总结
现在我们来回顾一下,今天这节课你有什么收获?
新教材基本不等式教学设计篇四
新人教版约分教学设计(三)
教材简析与设计意图:
《约分》是人教版实验教材第十册内容,约分是分数基本性质的直接应用。新课标指出:义务教育阶段的数学课程应突出体现基础性、普及性和发展性,是数学教育面向全体学生,为学生的全面发展创造条件。要尊重学生身心发展特点和教育规律,转变教育观念,激发学生独立思考和创新意识,让学生既学会知识,又学会学习,使学生生动活泼积极主动地发展。
在约分教学中,注重培养学生的学习情感,激发发展动机;创造机会,提供发展条件;因材施教,扩大发展层面;激活思维,深化发展效果。引导学生积极主动地参与全过程,从而体现“以学生发展为本”的原则。
教学目标:1、经历知识的形成过程,使学生理解约分和最简分数的意义,探索约分的方法。
2、掌握约分的方法,能根据实际情况正确进行约分。
3、培养学生的观察、比较和归纳等思维能力。
教学重点:掌握约分的方法
教学难点:很快看出分子、分母的公因数,并能准确地判断约分的结果是不是最简分数。
教学过程:
一、情境导入,猜测验证
1、创设游泳情境,提出问题
师:让我们一起到游泳场看一场激烈的百米游泳比赛
(播放游泳比赛录像,学生聚精会神地观看比赛过程)
师:游在第一位的运动员已经游了75米。
师:一共100米,已经游了75米,看到这两个条件你能想到什么?
学生积极思考,各抒己见汇报自己的想法:
生1:还有25米没有游;
生2:已经游了全程的75/100;
生3:还剩全程的25/100没有游;
生4:已经游了全程的3/4;
生5:还有1/4没有游。
师:已经游了全程的 75/100和游了全程的3/4是一回事吗?
生1:不是
生2:是一回事
师:你能运用已经学过的知识验证你们的结论吗?
2、运用已经学过的知识进行验证
学生进行激烈的小组讨论并汇报
生: 我们组认为75/100=3/4,因为75÷100=0.75 3÷4=0.75 所以75/100=3/4
师:这是我们曾经学过的什么知识呢?
生:分数与除法的关系
师:你们运用分数与除法的关系找到它们是相等的,还有其他的验证方法吗?
生:我们运用分数的基本性质:75/100的分子和分母同时除以25,得到3/4。
师追问:为什么同时除以25?
生:25是75和100的最大公因数
师:你们组不仅运用了分数的基本性质,而且还找到了75和100的最大公因数25,从而验证出相等,能学以致用,多好啊!
(板书:75/100=3/4)
3、根据验证过程引出最简分数的意义
师:通过刚才的验证我们知道75/100=3/4,还能说出一些和3/4相等的分数吗?
生:6/8、12/16、15/20、30/40 ------
师:这些分数中哪个最简单,为什么?
生:3/4最简单,因为3/4的分子和分母是一对互质数。
师:什么是互质数?
生:公因数只有1的两个数是互质数。
师:其他同学听出来了吗,有个词用得很好?
生:是“只有”
师:对,我们就把分子和分母只有公因数1的这样的分数就叫做最简分数。
(板书:最简分数)
师:在黑板上你还能很快找出一个最简分数吗?
生:1/4
师:说说理由。
生:因为1/4的分子和分母只有公因数1,所以它是最简分数。
师:那你现在知道1/4和25/100的关系了吗?
生:也是相等的。
师:很好,你们还能再举出一些最简分数的例子吗?
学生举例
教师总结:同学们通过刚才的观察、猜测、验证得出了最简分数的意义,大家表现的非常好,下面我们就来把一个分数化简称最简分数。
二、自主探索约分的方法
1、理解意义
出示例4 :把24/30化成最简分数
师:仔细读题,如何理解“化成最简分数”这句话。
生:就是把24/30变成和它大小相等,并且分子和分母的公因数只有1这样的分数。
师:同桌互相说一说该怎么做呢?
学生互说并汇报
生:24/30=24÷2/30÷2=12/15 12/15=12÷3/15÷3=4/5。
师:说说你是怎么想的?
生:先用24和30的公因数2去除,发现12/15不是最简分数,还有公因数3,再用3去除,最后得到最简分数4/5。
师:还有其他想法吗?
生:24/30=24÷6/30÷6=4/5 ,我是先找到24和30的最大公因数6,再用6去除分子和分母从而得到最简分数4/5。
师:同学们对比一下这两种方法,哪种更好一些呢?
生:找最大公因数的方法能更快地把一个分数化简成最简分数。
师小结:同学们运用分数的基本性质把24/30化简成最简分数,你们知道吗,刚才的这一过程叫做约分。(板书课题)
2、学生独立探究,尝试约分
学生看书p85,约分的一般方法
师:看完后,你能回答小精灵提出的问题“每一步中都是用分子、分母的哪个公因数去除的?"
学生边回答教师边演示约分的步骤及方法,并强调书写格式
师:在把一个分数化简成最简分数时,如果能很快找到分子和分母的最大公因数,就可以用最大公因数去约分,如果一下子找不到最大公因数,可以一步一步地用公因数去约分。下面请你仿照这一方法,把8/12进行约分。
学生自己完成
三、综合练习
1、情境中折纸表示8/32
出示蛋糕图
师:用你们手中的圆片代表蛋糕,并很快表示它的8/32。
学生积极思考,有的认真观察分数,有的急于动手折8/32,最终出现两种折法。
生1:我是把圆片对折了5次,平均分成了32份,再表示出其中的8份。
师:你很认真的折出了这个蛋糕的8/32,就是时间长了些,为什么有些同学却折得很快呢?
生2:我只折了它的1/4。
师:为什么?
生2:我发现8/32的分子和分母都有最大公因数8,约分后得到1/4。
师:多好啊!通过你的认真观察,运用今天学的知识-----约分,很快地找到了这个蛋糕的“8/32”,真是个善于动脑筋的孩子。
师小结:学习约分不仅可以分蛋糕,还可以运用到生活中的很多地方,只要你是个善于观察善于思考的孩子,你一定能做得最好、用得更好。
2、下面哪些分数没有化成最简分数,请把它们化成最简分数。
16/24=4/6 15/36=5/12 28/42=14/21 16/12=8/6
3、用最简分数表示小明每项活动占全天时间的几分之几?
4、我校六年级三个班在3.12的植树活动中,一班种了总数的17/30,二班种了总数的20/60,三班种了总数的7/30,你知道哪个植树最多吗?
生:20/60化简成10/30,在比较这三个分数的大小,发现哦一班种得最多。
师:你用约分的方法解决了生活中的实际问题,很好!完成了这道题后,同学们想说些什么呢?
生:看来约分不一定必须化简成最简分数,要根据实际而定。
师:说的多好啊!你们不仅会学以致用,而且还会根据实际情况灵活运用。
四、全课总结
师:今天这节课你有什么收获?
新教材基本不等式教学设计篇五
〖教学目标〗
在本学段,学生将经历从实际问题中建立不等关系,进而抽象出不等式的过程,体会不等式和方程一样,都是刻画现实世界中同类量之间关系的重要数学模型,同时进一步发展学生的符号感。
(一)知识目标
1、能够根据具体问题中的大小关系了解不等式的意义。
2、理解什么是不等式成立,掌握不等式是否成立的判定方法。
3、能依题意准确迅速地列出相应的不等式。体会现实生活中存在着大量的不等关系,学习不等式的有关知识是生活和工作的需要。
(二)能力目 标
1、培养学生运用类比方法研究相关内容的能力。
2、训练学生运用所学知识解决实际问题的能力。
(三)情感目标
1、通过引导学生分析问题、解决问题,培养他们积极的参与意识,竞争意识。
2、通过 不等式的学习,渗透具有不等量关系的数学美。
〖教学重点〗
能依题意准确迅速地列出相应的不等式。
〖教学难点〗
理解符号“≥”“ ≤”的含义,理解什么是不等式成立。
〖教学过程〗
一、课前布置
1、浏览课本p2~21,了解本章结构。
自学:阅读课本p2~p4,试着做一做本节练习,提出在自学中发现的问题。
2、查找“不等号的由来”
备注: 不等号的由来。
①现实世界中存在着大量的不等 关系,如何用符号表示呢? 为了寻求一套表示“大于”或“小于”的符号,数学家们绞尽脑汁。1631年,英国数学家哈里奥特首先创用符号“>”表示“大于”,“<”表示“小于”,这就是现在通用的大于号和小于号。与哈里奥特同时代的数学家们也创造了一些表示大 小关系的`符号,但都因书写起来十分繁琐而被淘汰。
②后来,人们在表达不等关系时,常把等式作为不等式的特殊情况来处理。在许多情况下,要用到一个数(或量)大于或等于另 一个数(或量),此时就把“>”和“=”有机地结合起来得到符号“≥”,读做“大于或等于”,有时也称为“不小于”。同样,把符号“≤”读做“小于或等于”,有时也称为“不大于”。
那么如何理解符号“≥”“≤”的含义呢?用“≥”表示“>”或 “=”,即两者必居其一,不要求同时满足。例如 ≥0,其中只有“>”成立,“=”就不成立。同样“≤”也有类似的情况。
③因此有人把a>b,b现代数学中又用符号“≮”表示“不小于”,用“≯”表示“不大于”。有了这些符号,在表示不等关系时,就非常得心应手了。
二、师生互动
和学生一起进行知识梳理
(一)由师生一起交流“不等号的由来”
① ,引出学习目标——认识不等式。
1、引起动机:
教师配合课本“观察与思考”“一起探究”等 内容提问:用数学式子要如何表示小卡车赶超大卡车?
2、学生进行讨论并回 答 。
3、教师举例说明:
数学符号“>、<、≥、≤、≠”称为不等号,而含有这些符号的式子就称为不等式。
4。结合自己的旧经验,让学生认识“≤”所代表的意思。
教师说明:
在小学时我们学过“小于”的符号,也就是说如果“a小于b”,我们可以记为“a<b”。 而a≤b”则读做“a小于或等于b”,也就表示“a比b小,而且a有可能等于b”。
5、仿照上面说明由学生进行“≥”的介绍。
6、教师举例提问:
如果我们要比较两数的大小关系时,可能会有几种情形?
(当我们比较两数的大小关系时,下面三种情形只有一种会成立,即 a<b,a=b或a>b)
7、老师提问:如果我们只知道“a不大于b”,那该如何用不等号来表 示呢?
(a不大于b表示a小于b且a有可能等于b,所以我们可以记录成a≤b)
8、仿照此题,引导学生了解“a不小于b”及“a不等于b”所代表的意义。
教师归纳说明:不等式的意义
不等式表示现实世界中同类量的不等关系。在有理数大小的比较中,我们常用不等号连接两个或两个以上的有理数,如—3>—5、不等式含有不等 号,常见的不等号有五种,其读法及意义如下:
(1)“>”读作“大于”,表示其左边的量比右边的量大。
(2)“<”读作“小于”,表示其左边的量比右边的量小。
(3)“≥”读作“大于等于”,即“不小于”,表示其左边的量大于或等于右边。
(4)“≤”读作“小于等于”,即“不大于”,表示其左边的量小于或等于右边。
(5)“≠”读作“不等于”,它说明两个量之间的关系是不相等的,但不能明确哪个大,哪个小。
(二)用不等式表示数量关系
关键是明确问题中常用的表示不等关系词语的意义,并注意隐含在具体的情境中的不等关系。
补充例1。 下面列出的不等式中,正确的是 ( )
(a)a不是负数,可表示成a>0m
(b)x不大于3,可表示成x<3
(c)m与4的差是负数,可表示成m—4<0
(d)x与2的和是非负数,可表示成x+2>0
解析:用不等式表示下列数量关系,关键是能用代数式准确地表示出有关的数量,并掌握"不大于"、“不超过”、“是非负数”等词语的正确含义及表示符号。
因为 a不是负数,可表示成a≥0;x不大于3,应表示成x≤3;x与2的和是非负数应表示成x+2≥0,所以 只有(c)正确。 故本题应选(c)。
(三)不等式成立的意义
对于含有未知数的不等式来说,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立;当未知数取某些值时,不等式的左、右两边 不符合不等号所表示的大小关系,我们说不等式不成立。强调用“≥”表示“>”或“=” ,即两者必居其一,不要求同时满足。例如 ≥0,其中只有“>”成立,“=”就不成立。
三、补充练习
作业:课本p4习题
5分钟练习
1、“x的2倍与3的和是非负数”列成不等式为( )
a、2x+3≥0 b。2x+3>0 c。2x+3≤0 d。2x+3<0
2、几个人分若干个苹果,若每人3个还余5个,若去掉1人,则每人4个还有剩余。设有x个人,可列不等式为___________。
〖分层作业〗
基础知识
1、判断下列各式哪些是等式、哪些是不等式、哪些既不是等式也不是不等式。
①x+y
②3x>7
③5=2x+3
④x2≥0
⑤2x-3y=1
⑥52
2、用适当符号表示下列关系。
(1)a的7 倍与15的和比b的3倍大;
(2)a是非正数;
3、在-1,0, 1,3,7,100中哪些能使不等式x+1<2成立?
综合运用
4、通过测量一棵树的树围,(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5 m的地方作为测量部位,某树栽种时的树围为5 cm,以后树围每年增加约3 cm。这棵树至少生长多少年其树围才能超过2.4 m?请你列出关系式。
5、燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m以外的安全区域。已知 导火线的燃烧速度为0.02 m/s,人离开的速度为4 m/s,导火线的长x(m)应满足怎样的关系式?请你列出。
新教材基本不等式教学设计篇六
一、教学目标:
(一)知识与技能
1.掌握不等式的三条基本性质。
2.运用不等式的基本性质对不等式进行变形。
(二)过程与方法
1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。
2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。
(三)情感态度与价值观
通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。
二、教学重难点
教学重点: 探索不等式的三条基本性质并能正确运用它们将不等式变形。
教学难点: 不等式基本性质3的探索与运用。
三、教学方法:自主探究——合作交流
四、教学过程:
情景引入:1.举例说明什么是不等式?
2.判断下列各式是否成立?并说明理由。
( 1 ) 若x-6=10, 则x=16( )
( 2 ) 若3x=15, 则 x=5 ( )
( 3 ) 若x-6>10 则 x>16( )
( 4 ) 若3x>15 则 x>5 ( )
【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。
温故知新
问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?
等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。
估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,<,≥,≤”具有方向性,我们应该重点研究它在方向上的变化。
问题2.你能通过实验、猜想,得出进一步的结论吗?
同学通过实例验证得出结论,师生共同总结不等式性质1。
问题3.你能由等式性质2进一步猜想不等式还具有什么性质吗?
等式性质2:等式两边都乘或除以同一个数(除数不能是0),等式依然成立。
估计学生会猜:不等式两边都乘或除以同一个数(除数不能是0),不等号的方向不变。
你能和小伙伴一起来验证你们的猜想吗?
学生在小组内合作交流,发现了在不等式两边都乘或除以同一个数时,不等号的方向会出现两种情况。教师进一步引导学生通过分析、比较探索规律,从而形成共识,归纳概括出不等式性质2和3。
问题4.在不等式两边都乘0会出现什么情况?
问题5.如果a、b、c表示任意数,且a<b,你能用a、b、c把不等式的基本性质表示出来码?
【想一想】不等式的基本性质与等式的基本性质有什么相同之处,有什么不同之处?
学生思考,独立总结异同点。
【设计意图】引导学生把二者进行比较,有助于加深对不等式基本性质的理解,促成知识的“正迁移”。
综合训练:你能运用不等式的基本性质解决问题吗?
1、课本62页例3
教师引导学生观察每个问题是由a>b经过怎样的变形得到的,应该应用不等式的哪条基本性质。由学生思考后口答。
2、你认为在运用不等式的基本性质时哪一条性质最容易出错,应该怎样记住?
3.火眼金睛
①a>1, 则2a___a
②a>3a,则 a ___ 0
【设计意图】通过变式训练,加深学生对新知的理解,培养学生分析、探究问题的能力。
课堂小结:
这节课你有哪些收获?你认为自己的表现如何?教师引导学生回顾、思考、交流。
【设计意图】回顾、总结、提高。学生自觉形成本节的课的知识网络。
思考题
咱们班的盛芳同学准备在五、一期间和他的爸爸、妈妈外出旅游。青年旅行社的标准为:大人全价,小孩半价;方正旅行社的标准为:大人、小孩一律八折。若两家旅行社的基本价一样,你能帮盛芳同学考虑一下选择哪家旅行社更合算吗?
【设计意图】利用所学的数学知识,解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。
新教材基本不等式教学设计篇七
教学重点
1、创设代数与几何背景,用数形结合的思想理解基本不等式;
2、从不同角度探索基本不等式的证明过程;
3、从基本不等式的证明过程进一步体会不等式证明的常用思路。
教学难点
1、对基本不等式从不同角度的探索证明;
2、通过基本不等式的证明过程体会分析法的证明思路。
教具准备 多媒体及课件
三维目标
一、知识与技能
1、创设用代数与几何两方面背景,用数形结合的思想理解基本不等式;
2、尝试让学生从不同角度探索基本不等式的证明过程;
3、从基本不等式的证明过程进一步体会不等式证明的常用思路,即由条件到结论,或由结论到条件。
二、过程与方法
1、采用探究法,按照联想、思考、合作交流、逻辑分析、抽象应用的方法进行启发式教学;
2、教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;
3、将探索过程设计为较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣。
三、情感态度与价值观
1、通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行归纳、抽象,使学生感受数学、走进数学,培养学生严谨的数学学习习惯和良好的思维习惯;
2、学习过程中,通过对问题的探究思考,广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;
3、通过对富有挑战性问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘、数学的简洁美、数学推理的严谨美,从而激发学生的学习兴趣。
教学过程
导入新课
探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗?
(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)
推进新课
师 同学们能在这个图中找出一些相等关系或不等关系吗?如何找?
(沉静片刻)
生 应该先从此图案中抽象出几何图形。
师 此图案中隐含什么样的几何图形呢?哪位同学能在黑板上画出这个几何图形?
(请两位同学在黑板上画。教师根据两位同学的板演作点评)
(其中四个直角三角形没有画全等,不形象、直观。此时教师用投影片给出隐含的规范的几何图形)
师 同学们观察得很细致,抽象出的几何图形比较准确。这说明,我们只要在现有的基础上进一步刻苦努力,发奋图强,也能作出和数学家赵爽一样的成绩。
(此时,每一位同学看上去都精神饱满,信心百倍,全神贯注地投入到本节课的学习中来)
[过程引导]
师 设直角三角形的两直角边的长分别为a、b,那么,四个直角三角形的面积之和与正方形的面积有什么关系呢?
生 显然正方形的面积大于四个直角三角形的面积之和。
师 一定吗?
(大家齐声:不一定,有可能相等)
师 同学们能否用数学符号去进行严格的推理证明,从而说明我们刚才直觉思维的合理性?
生 每个直角三角形的面积为,四个直角三角形的面积之和为2ab。正方形的边长为,所以正方形的面积为a2+b2,则a2+b2≥2ab。
师 这位同学回答得很好,表达很全面、准确,但请大家思考一下,他对a2+b2≥2ab证明了吗?
生 没有,他仍是由我们刚才的直观所得,只是用字母表达一下而已。
师 回答得很好。
(有的同学感到迷惑不解)
师 这样的叙述不能代替证明。这是同学们在解题时经常会犯的错误。实质上,对文字性语言叙述证明题来说,他只是写出了已知、求证,并未给出证明。
(有的同学窃窃私语,确实是这样,并没有给出证明)
师 请同学们继续思考,该如何证明此不等式,即a2+b2≥2ab。
生 采用作差的方法,由a2+b2-2ab=(a-b)2,∵(a-b)2是一个完全平方数,它是非负数,即(a-b)2≥0,所以可得a2+b2≥2ab。
师 同学们思考一下,这位同学的证明是否正确?
生 正确。
[教师精讲]
师 这位同学的证明思路很好。今后,我们把这种证明不等式的思想方法形象地称之为“比较法”,它和根据实数的基本性质比较两个代数式的大小是否一样。
生 实质一样,只是设问的形式不同而已。一个是比较大小,一个是让我们去证明。
师 这位同学回答得很好,思维很深刻。此处的比较法是用差和0作比较。在我们的数学研究当中,还有另一种“比较法”。
(教师此处的设问是针对学生已有的知识结构而言)
生 作商,用商和“1”比较大小。
师 对。那么我们在遇到这类问题时,何时采用作差,何时采用作商呢?这个问题让同学们课后去思考,在解决问题中自然会遇到。
(此处设置疑问,意在激发学生课后去自主探究问题,把探究的思维空间切实留给学生)
[合作探究]
师 请同学们再仔细观察一下,等号何时取到。
生 当四个直角三角形的直角顶点重合时,即面积相等时取等号。
(学生的思维仍建立在感性思维基础之上,教师应及时点拨)
师 从不等式a2+b2≥2ab的证明过程能否去说明。
生 当且仅当(a-b)2=0,即a=b时,取等号。
师 这位同学回答得很好。请同学们看一下,刚才两位同学分别从几何图形与不等式两个角度分析等号成立的条件是否一致。
(大家齐声)一致。
(此处意在强化学生的直觉思维与理性思维要合并使用。就此问题来讲,意在强化学生数形结合思想方法的应用)
板书:
一般地,对于任意实数a、b,我们有a2+b2≥2ab,当且仅当a=b时,等号成立。
[过程引导]
师 这是一个很重要的不等式。对数学中重要的结论,我们应仔细观察、思考,才能挖掘出它的内涵与外延。只有这样,我们用它来解决问题时才能得心应手,也不会出错。
(同学们的思维再一次高度集中,似乎能从不等式a2+b2≥2ab中得出什么。此时,教师应及时点拨、指引)
师 当a>0,b>0时,请同学们思考一下,是否可以用a、b代替此不等式中的a、b。
生 完全可以。
师 为什么?
生 因为不等式中的a、b∈r。
师 很好,我们来看一下代替后的结果。
板书:
即 (a>0,b>0)。
师 这个不等式就是我们这节课要推导的基本不等式。它很重要,在数学的研究中有很多应用,我们常把叫做正数a、b的算术平均数,把ab叫做正数a、b的几何平均数,即两个正数的算术平均数不小于它们的几何平均数。
(此处意在引起学生的重视,从不同的角度去理解)
师 请同学们尝试一下,能否利用不等式及实数的基本性质来推导出这个不等式呢?
(此时,同学们信心十足,都说能。教师利用投影片展示推导过程的填空形式)
要证:,①
只要证a+b≥2,②
要证②,只要证:a+b-2≥0,③
要证③,只要证:④
显然④是成立的,当且仅当a=b时,④中的等号成立,这样就又一次得到了基本不等式。
(此处以填空的形式,突出体现了分析法证明的关键步骤,意在把思维的时空切实留给学生,让学生在探究的基础上去体会分析法的证明思路,加大了证明基本不等式的探究力度)
[合作探究]
老师用投影仪给出下列问题。
如图,ab是圆的直径,点c是ab上一点,ac=a,bc=b。过点c作垂直于ab的弦dd′,连结ad、bd。你能利用这个图形得出基本不等式的几何解释吗?
(本节课开展到这里,学生从基本不等式的证明过程中已体会到证明不等式的常用方法,对基本不等式也已经很熟悉,这就具备了探究这个问题的知识与情感基础)
[合作探究]
师 同学们能找出图中与a、b有关的线段吗?
生 可证△acd ∽△bcd,所以可得。
生 由射影定理也可得。
师 这两位同学回答得都很好,那ab与分别又有什么几何意义呢?
生表示半弦长,表示半径长。
师 半径和半弦又有什么关系呢?
生 由半径大于半弦可得。
师 这位同学回答得是否很严密?
生 当且仅当点c与圆心重合,即当a=b时可取等号,所以也可得出基本不等式 (a>0,b>0)。
课堂小结
师 本节课我们研究了哪些问题?有什么收获?
生 我们通过观察分析第24届国际数学家大会的会标得出了不等式a2+b2≥2ab。
生 由a2+b2≥2ab,当a>0,b>0时,以、分别代替a、b,得到了基本不等式 (a>0,b>0)。进而用不等式的性质,由结论到条件,证明了基本不等式。
生 在圆这个几何图形中我们也能得到基本不等式。
(此处,创造让学生进行课堂小结的机会,目的是培养学生语言表达能力,也有利于课外学生归纳、总结等学习方法、能力的提高)
师 大家刚才总结得都很好,本节课我们从实际情景中抽象出基本不等式。并采用数形结合的思想,赋予基本不等式几何直观,让大家进一步领悟到基本不等式成立的条件是a>0,b>0,及当且仅当a=b时等号成立。在对不等式的证明过程中,体会到一些证明不等式常用的思路、方法。以后,同学们要注意数形结合的思想在解题中的灵活运用。
布置作业
活动与探究:已知a、b都是正数,试探索, ,,的大小关系,并证明你的结论。
分析:(方法一)由特殊到一般,用特殊值代入,先得到表达式的大小关系,再由不等式及实数的性质证明。
(方法二)创设几何直观情景。设ac=a,bc=b,用a、b表示线段ce、oe、cd、df的长度,由ce>oe>cd>df可得。
板书设计
基本不等式的证明
一、实际情景引入得到重要不等式
a2+b2≥2ab
二、定理
若a>0,b>0
课后作业:
证明过程探索:
新教材基本不等式教学设计篇八
(一)教学目标
1.知识与技能:使学生感受到在现实世界和日常生活中存在着大量的不等关系,在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容。
2.过程与方法:以问题方式代替例题,学习如何利用不等式研究及表示不等式,利用不等式的有关基本性质研究不等关系;
3.情态与价值:通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的的设置,通过学生对问题的探究思考,广泛参与,改变学生学习方式,提高学习质量。
(二)教学重、难点
重点:用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值。
难点:用不等式(组)正确表示出不等关系。
(三)教学设想
[创设问题情境]
问题1:设点a与平面的距离为d,b为平面上的任意一点,则d≤。
问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。根据市场调查,若单价每提高0.1元,销售量就可能相应减少本。若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元?
分析:若杂志的定价为x元,则销售的总收入为万元。那么不等关系“销售的总收入不低于20万元”可以表示为不等式≥20
问题3:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍。怎样写出满足上述所有不等关系的不等式呢?
分析:假设截得500mm的钢管x根,截得600mm的钢管y根..
根据题意,应有如下的不等关系:
(1)解得两种钢管的总长度不能超过4000mm;
(2)截得600mm钢管的数量不能超过500mm钢管数量的3倍;
(3)解得两钟钢管的数量都不能为负。
由以上不等关系,可得不等式组:
[练习]第82页,第1、2题。
[知识拓展]
设问:等式性质中:等式两边加(减)同一个数(或式子),结果仍相等。不等式是否也有类似的性质呢?
从实数的基本性质出发,可以证明下列常用的不等式的基本性质:
(1)
(2)
(3)
(4)
证明:
例1讲解(第82页)
[练习]第82页,第3题。
[思考]:利用以上基本性质,证明不等式的下列性质:
[小结]:1.现实世界和日常生活中存在着大量的不等关系;
2.利用不等式的有关基本性质研究不等关系;
[作业]:习题3.1(第83页):(a组)4、5;(b组)2.
新教材基本不等式教学设计篇九
一、三维目标:
1、知识与技能:
理解基本不等式的内容及其证明,能应用基本不等式解决求最值、证明不等式、比较大小、求取值范围等问题
2、过程与方法:
能够理解并建立不等式的知识链
3、情感、态度与价值观:
通过运用基本不等式解答实际问题,提高用数学手段解答现实生活中的问题的能力和意识
4、本节重点:
应用数形结合的思想,理解基本不等式,并从不同角度探索基本不等式的证明过程
5、本节难点:
应用基本不等式求最值
二、课程引入:
第24届世界数学家大会在北京召开,会标设计如图:
四个以a,b为直角边的直角△abc,组成正方形abcd
则
如图可知: 即
当且仅当小正方形efgh面积为0时取等号,即时取得等号
三、新课讲授:
(一)基本不等式的推证:
1、重要不等式与基本不等式
由引入中提到的重要不等式,将其中的用代换,
得到基本不等式,当且仅当时,即时取得等号。
特别注意,重要不等式的适用范围是全体实数,
而基本不等式的使用需要
2、基本不等式的几种表述方式
平均数角度:两正数的算术平均数不小于它们的几何平均数(均值不等式定理)
数列角度:两正数的等差中项不小于它们的等比中项
探究:基本不等式的几何表示:半径不小于半弦长
3、分析法推证基本不等式
要证,只需证明(2)。要证明(2)只需证明(3)。
要证明(3)只需证明(4)。(4)式显然成立,故得证。
(二)基本不等式的应用与提高:
1、你是设计师!
(1)春天到了,学校决定用篱笆围一个面积为100平米的花圃种花。有以下两种方案:
圆形花圃:造价12元/米
矩形花圃:造价10元/米
你觉得哪个方案更省钱呢?
分析及解答:因为初中学习过平面几何,同学们大都知道,同样长度的篱笆围圆形会比围矩形得到的面积大,由此可知,同样的面积肯定是为圆形用的材料省。但是本题涉及造价问题,两种篱笆的花费不同。圆形篱笆虽然需要的材料少,但是每米的花费高,所以到底应该用哪个方案需要动手算一下才能知道。在这里让学生分成两派,可以自己选择一个认为比较省钱的方案去计算。
圆形花圃:
矩形花圃:设两边为x,y,,故当x=y时花费最少为400元
(2)现在只有36米的篱笆可用,怎么样设计才能使得矩形花圃的面积最大?
解:
(3)有人出了个主意,让花圃的一面靠墙,利用墙壁作为花圃的一边,可以省一部分材料。那么发挥你的聪明才智,用这36米的篱笆,怎么样设计才能围出面积最大的花圃?
2、看谁算得快!
3、大家来挑错!
分析:结合上一系列题目中的(5)-(7)题可知,本题的解答忽略了对基本不等式使用时必须是正数这一点注意事项。
本题的解答在使用基本不等式时没有找到定值条件,只是盲目的套用基本不等式的形式,导致所得结果并不是最小的值。
提醒同学注意:在使用基本不等式求最值为题时,式中的积或和必须是定值。
本题的解答没有注意本身的限制,使得基本不等式的等号无法取得。
提醒同学注意:最值是否存在要考虑基本不等式中的`等号是否能取得,在什么情况下取得。
(三)小结:
1、使用重要不等式和基本不等式需要注意适用条件,基本不等式需要正数,重要不等式可用于全体实数。
2、积定和最小、和定积最大。
3、使用基本不等式解决最值问题需要注意“一正,二定,三相等”
四、作业:
1、书后练习题。
2、请你给出大家来挑错环节里三道题目的正确解答。
五、课后反思:
1、多媒体的运用。
在引入部分,关于数学家大会的图标,如果可以进一步利用多媒体做出可以变形的效果,让学生更加直观的观察到变换过程的话,教学效果会更好。
2、应该引导学生多种思路考虑问题
比如这样的拼凑出定值条件的思路是学生应该掌握的。
3、因为本节是新课讲授,学生新接触一个知识,还没有能够很好的融会贯通。因此上在这个阶段不应该做过难的题目。一些简单的,同时可以起到巩固新知识的小题目往往可以起到更好的效果。本课中设计了一些基本可以口答的小题,让学生在很短的时间中完成。这不仅可以强化学生会本节主要内容的理解和运用,而且也对快速反应和解答题目进行了强化,提高学生解题效率。
4、让学生学会检查和挑错其实是很重要的。本课中的大家来挑错环节不仅可以强化学生对本节重点内容的理解,而且再遇到相似题型的时候可以避免犯类似的错误,提高教学效率。同时也培养了学生质疑精神,寻求科学真理的热情。
新教材基本不等式教学设计篇十
【教学目标】
1.通过具体情境让学生感受和体验现实世界和日常生活中存在着大量的不等关系,鼓励学生用数学观点进行观察、归纳、抽象,使学生感受数学、走进数学、改变学生的数学学习态度。
2.建立不等观念,并能用不等式或不等式组表示不等关系。
3.了解不等式或不等式组的实际背景。
4.能用不等式或不等式组解决简单的实际问题。
【重点难点】
重点:
1.通过具体的问题情景,让学生体会不等量关系存在的普遍性及研究的必要性。
2.用不等式或不等式组表示实际问题中的不等关系,并用不等式或不等式组研究含有简单的不等关系的问题。
3.理解不等式或不等式组对于刻画不等关系的意义和价值。
难点:
1.用不等式或不等式组准确地表示不等关系。
2.用不等式或不等式组解决简单的含有不等关系的实际问题。
【方法手段】
1.采用探究法,按照阅读、思考、交流、分析,抽象归纳出数学模型,从具体到抽象再从抽象到具体的方法进行启发式教学。
2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用。
3.设计教典型的现实问题,激发学生的学习兴趣和积极性。
【教学过程】
教学环节
教师活动
学生活动
设计意图
导入新课
日常生活中,同学们发现了哪些数量关系。你能举出一些例子吗?
实例1.某天的天气预报报道,最高气温35℃,最低气温29℃。
实例2.若一个数是非负数,则这个数大于或等于零。
实例3.两点之间线段最短。
实例4.三角形两边之和大于第三边,两边之差小于第三边。
引导学生想生活中的例子和学过的数学中的例子。在老师的引导下,学生肯定会迫不及待的能说出很多个例子来。即活跃了课堂气氛,又激发了学生学习数学的兴趣。
推进新课
同学们所举的这些例子联系了现实生活,又考虑到数学上常见的数量关系,非常好。而且大家已经考虑到本节课的标题《不等关系与不等式》,所举的实例都是反映不等量的关系。
(下面利用电脑投影展示两个实例)
实例5:限时40km/h的路标,指示司机在前方路段行使时,应使汽车的速度v不超过40km/h。
实例6:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
同学们认真观看显示屏幕上老师所举的例子。
让学生们边看边思考:生活中有许多的事情的描述可以采用不等的数量关系来描述
过程引导
能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但是我们还要能用数学的眼光、数学的观点、进行观察、归纳、抽象,完成这些量与量的比较过程,那么我们用什么知识来表示这些不等关系呢?
什么是不等式呢?
用大屏幕展示一组不等式-7<-5;3+4>1+4;2x≤6;a+2≥0;3≠4.
能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程通过对不等式数学模型的研究,反过来作用于现实生活,这才是学习数学的最终目的。
思考并回答老师的问题:可以用不等式或不等式组来表示不等关系。
经过老师的启发和点拨,学生可以自己总结出:用不等号将两个解析试连接起来所成的式子叫不等式。
目的是让学生回忆不等式的一些基本形式,并说明不等号≤,≥的含义,是或的关系。回忆了不等式的概念,不等式组学生自然而然就清楚了。
此时学生已经迫不及待地想说出自己的观点了。
合作探究
(一)。下面我们把上述实例中的不等量的关系用不等式或不等式组一一的表示出来,那应该怎么表示呢?
这两位同学的观点是否正确?
老师要表扬学生:“很好!这样思考问题很严密。”应该用不等式组来表示此实际问题中的不等量关系,也可以用“且”的形式来表达。
(二)。问题一:设点a与平面的距离为d,b为平面上的任意一点。
请同学们用不等式或不等式组来表示出此问题中的不等量的关系。
老师提示:借助于图形,这个问题是不是可以解决?
(下面让学生板演,结合三角形草图来表达)
问题(二):某种杂志原以每本2.5元的价格销售,可以售出8万本,据市场调查,若单价每提高0.1元,销售量就可能相应减少本。若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?
是不是还有其他的思路?
为什么可以这样设?
很好,请继续讲。
这位学生回答的很好,表述得很准确。请同学们对两种解法作比较。
问题(三):某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不超过500mm钢管的3倍。怎样写出满足上述所有不等式关系的不等式?
假设截得500mm的钢管x根,截得600mm的钢管y根。根据题意,应当有什么样的不等量关系呢?
右边的三个不等关系是“或”还是“且”的关系呢?
这位学生回答得很好,思维很严密,那么该用怎样的不等式组来表示此问题中的不等关系呢?
通过上述三个问题的探究,同学们对如何用不等式或不等式组把实际问题中隐藏的不等量关系表示出来,这一点掌握得很好。请同学们完成书本练习第74页1,2。
课堂小结:
1.学习数学可以帮助我们解决实际生活中的问题。
2.数学和我们的生活联系非常密切。
3.本节课巩固了二元一次不等式及二元一次不等式组,并且能用它来解决现实生活中存在的大量不等量关系的实际问题。还要注意思维要严密,规范,并且要注意数形结合等思想方法的综合应用。
布置作业:
第75页习题3.1 a组4,5。
29℃≤t≤35℃
x≥0
|ac|+|bc|>|ab|
|ab|+|bc|>|ac|、|ac|+|bc|>|ab|、|ab|+|ac|>|bc|.
|ab|-|bc|<|ac|、|ac|-|bc|<|ab|、
|ab|-|ac|<|bc|.交被减数与减数的位置也可以。
如果用表示速度,则v≤40km/h.
f≥2.5%或p≥2.3%
学生自己纠正了错误:这种表达是错误的,因为两个不等量关系要同时满足,所以应该用不等式组来表示次实际问题中的不等量关系,即可以表示为也可表示为f≥2.5%且p≥2.3%.
过点a作ac⊥平面于点c,则d=|ac|≤|ab|
可设杂志的定价为x元,则销售量就减少万本。销售量变为(8-)万本,则总收入为(8-)x万元。即销售的总收入为不低于20万元的不等式表示为(8-)x≥20.
解法二:可设杂志的单价提高了0.1n元,(n)
我只考虑单价的增量。
那么销售量减少了0.2n万本,单价为(2.5+0.1n)元,则也可得销售的总收入为不低于20万元的不等式,表示为(2.5+0.1n)(8-0.2n)≥20.
截得两种钢管的总长度不能超过4000mm。
截得600mm钢管的数量不能超过500mm钢管的3倍。
截得两种钢管的数量都不能为负数。
它们是同时满足条件,应该是且的关系。由实际问题的意义,还应有x,y要同时满足上述三个不等关系,可以用下面的不等式组来表示:
如果学生没有想到的话,老师可以在黑板上板演示意图,启发学生考虑三边的大小关系。
此时启发学生“或”字可以吗?学生没有了声音,他们在思考着。到底行不行呢?有的回答“行”,有的回答“不行”。
此时学生们在思考,时间长的话,老师要及时点拨。
让学生知道,在解决问题时应该贯穿数形结合的思想,以形助数,下面有学生的声音,有学生在讨论,有的学生还有疑问。老师注意关注学生的思维状况,并且及时的加以指导。
此时学生已经真正进入本节课的学习状态,老师再给出问题(三)使学生一直处于跟随老师积极思考和解决问题的状态。问题是教学研究的核心,以问题展示的形式来培养学生的问题意识与探究意识。
【教学反思】(【设计说明】)
本节课内容很多,都是不等式和不等式组的有关问题,还有很多是生活中的实例,学生学习起来很感兴趣,课堂的气氛也很好,大多数学生都能很积极地回答问题,使课堂的学习气氛很浓,确实也做到了愉快教学。设计是按照老师引导式教学,边讲授边引导,启发学习思考问题及能自己解决问题,锻炼学习能自主的学习能力。
【交流评析】
一是课堂容量适中,二是实例很好,接近生活,学生感兴趣。三是学生回答问题积极踊跃,和老师配合很好。四是多媒体应用的恰到好处,教学设备很完善,老师也能很熟练的应用。
新教材基本不等式教学设计篇十一
教学分析
本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.
在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.
三维目标
1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.
2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.
3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.
重点难点
教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.
教学难点:准确比较两个代数式的大小.
课时安排
1课时
教学过程
导入新课
思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.
思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.
推进新课
新知探究
提出问题
1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?
2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?
3数轴上的任意两点与对应的两实数具有怎样的关系?
4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?
活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a
教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.
实例1:某天的天气预报报道,最高气温32 ℃,最低气温26 ℃.
实例2:对于数轴上任意不同的两点a、b,若点a在点b的左边,则xa
实例3:若一个数是非负数,则这个数大于或等于零.
实例4:两点之间线段最短.
实例5:三角形两边之和大于第三边,两边之差小于第三边.
实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.
实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.
教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|ac|+|bc|>|ab|,如下图.
|ab|+|bc|>|ac|、|ac|+|bc|>|ab|、|ab|+|ac|>|bc|.
|ab|-|bc|<|ac|、|ac|-|bc|<|ab|、|ab|-|ac|<|bc|.交换被减数与减数的位置也可以.
实例6,若用v表示速度,则v≤40 km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.
对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.
讨论结果:
(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.
(4)对于任意两个实数a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b<0a
应用示例
例1(教材本节例1和例2)
活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.
点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.
变式训练
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是( )
a.f(x)>g(x) b.f(x)=g(x)
c.f(x)
答案:a
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.
例2比较下列各组数的大小(a≠b).
(1)a+b2与21a+1b(a>0,b>0);
(2)a4-b4与4a3(a-b).
活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.
∴a4-b4<4a3(a-b).
点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.
变式训练
已知x>y,且y≠0,比较xy与1的大小.
活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.
解:xy-1=x-yy.
∵x>y,∴x-y>0.
当y<0时,x-yy<0,即xy-1<0. ∴xy<1;
当y>0时,x-yy>0,即xy-1>0.∴xy>1.
点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.
例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.
活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.
解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.
点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.
变式训练
已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则( )
a.a1+a8>a4+a5 b.a1+a8
c.a1+a8=a4+a5 d.a1+a8与a4+a5大小不确定
答案:a
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各项都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
知能训练
1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为( )
a.3 b.2 c.1 d.0
2.比较2x2+5x+9与x2+5x+6的大小.
答案:
1.c解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,
③x2+y2-2xy=(x-y)2≥0.
∴只有①恒成立.
2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,
所以2x2+5x+9>x2+5x+6.
课堂小结
1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.
2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.
作业
习题3—1a组3;习题3—1b组2.
设计感想
1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.
2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.
3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.
备课资料
备用习题
1.比较(x-3)2与(x-2)(x-4)的大小.
2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.
3.已知x>0,求证:1+x2>1+x .
4.若x
5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.
参考答案:
1.解:∵(x-3)2-(x-2)(x-4)
=(x2-6x+9)-(x2-6x+8)
=1>0,
∴(x-3)2>(x-2)(x-4).
2.解:(1)(m2-2m+5)-(-2m+5)
=m2-2m+5+2m-5
=m2.
∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.
∴m2-2m+5≥-2m+5.
(2)(a2-4a+3)-(-4a+1)
=a2-4a+3+4a-1
=a2+2.
∵a2≥0,∴a2+2≥2>0.
∴a2-4a+3>-4a+1.
3.证明:∵(1+x2)2-(1+x)2
=1+x+x24-(x+1)
=x24,
又∵x>0,∴x24>0.
∴(1+x2)2>(1+x)2.
由x>0,得1+x2>1+x.
4.解:(x2+y2)(x-y)-(x2-y2)(x+y)
=(x-y)[(x2+y2)-(x+y)2]
=-2xy(x-y).
∵x0,x-y<0.
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,
当a>b>0时,ab>1,a-b>0,
则(ab)a-b>1,于是aabb>abba.
当b>a>0时,0
则(ab)a-b>1.
于是aabb>abb a.
综上所述,对于不相等的正数a、b,都有aabb>abba.
【基本不等式教学设计(通用8篇)】
新教材基本不等式教学设计篇十二
不等式的教学设计
教材分析
学生初步接触了一点代数知识(如用字母表示定律,用符号表示数),是在学生学习了用字母表示数以后基础上进行学习。应用方程是解决问题的基础,有关的几个概念,教材只作描述不下定义。在教学设计中仍然把理念作为教学的重点,理解方程的意义,判断“等式”和“方程”知道方程是一个“含有未知数的等式”,才有可能明确所谓解方程。
学情分析
学生不够活泼,学习积极性不是很高,学生数学基础不好。方程对学生来说还是比较陌生的,在他们头脑中还没有过方程这样的表象,所以授新课就要从学生原有的`基础开始,因为在前面学习用字母表示数的这部分内容时,有了基础,我想在学习简易方程应该没什么大的问题。
教学目标
1、使学生初步理解和辨析“等式”“不等式”的意义。
2、会按要求用方程表示出数量关系,
3、培养学生的观察、比较、分析能力。
教学重点和难点
教学重点: 用字母表示常见的数量关系,会用方程的意义去判断一个式子是否是方程。
教学过程
一、创设情景,建立表象
教师介绍天平各部分名称。让学生操作当天平两端托盘的物体的质量相等时,天平就会平衡,指针指向中。根据这这个原理来称物体的质量。(让学生操作,激发学生的兴趣,借助实物演示的优势。初步感受平衡与不平衡的表象)
二、探索交流,探究新知
1、实物演示,引出方程:
(1)在天平称出100克的左边空杯,让学生观察是否平衡,感受1只空杯=100克。
(2)往空杯里倒入果汁,另一边加100克法码,问学生发现了什么? (让学生感受天平慢慢倾斜,水是未知数)引出100+x>200,往右加100克法码, 问:哪边重些?(学生初步感受平衡和不平衡的表象) 问:怎样用式子表示?100+x<300
(3)教学100+x=250 问:如果是天平平衡怎么办?(让学生讨论交流平衡的方案)把100克法码换成50克的砝码,这时会怎样?(引导学生观察这时天平出现平衡), 问:现在两边的质量怎样?现在水有多重知道吗?如果用字母x表示怎样用式子表示?得出:100+x=250
2、理解“等式”和“不等式的关系以及“方程”的意义
示题:100+x<250100+x=2504x+50>10040+40=80 x÷2=45x-12=27
请学生观察合作交流分类:
(一)引出(1)两边不相等,叫做不等式。(2)两边相等叫做等式。
(二)(1)不含未知数的等式40+40=80
(2)含有未知数的等式100+x=250 x÷2=4 揭示:(2)这样的含有未知数等式叫做方程(通过分类,培养学生对方程意义的了解) 问:方程的具备条件是什么?(感知必须是等式,而一定含有未知数)你能写出一些方程吗?(同桌交流检查)
(三)练习判断那些是方程?那些不是方程?
6+2x=14103+x250÷2=1256+x>251÷a=3x+y=180 (让学生加深对方程的意义的认识,培养学生的判断能力。)
4、方程和等式的关系
教师:我们能够判断什么是方程了,方程和等式有很密切的关系,你能画图来表示他们的关系吗?(小组合作讨论交流)
方程 等式 (让学生通过观察、思考、分析、归类,自主发现获得对方程和等式的关系理解,同时初步渗透教学中的集合思想。)
小结问:什么是方程?(含有未知数的等式)
新教材基本不等式教学设计篇十三
一、教学目标:
(一)知识与能力目标:(课件第2张)
1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法.
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:
1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)
1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式
的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:
教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教具:计算机辅助教学.
五、教学流程:
(一)、复习:
教学环节
教师活动
学生活动
设计意图
导入新课
1.给出方程:(x+4)/3=(3x-1)/2,抽学生演算。(注意步骤)
2.学生回忆不等式的性质,并说出解不等式的关键在哪里。
3.让学生举一些不等式的例子。在学生归纳出一元一次不等式的概念后,据情况点评。
4.新课导入:通过上节课的学习,我们已经掌握了解简单不等式的方法。这节课我们来共同探讨解一元一次不等式的方法。
5.学生练习,并说出解一元一次方程的步骤。
6.认真思考,用自己的语言描述不等式的性质,说出解不等式的关键在于将不等式化为x≤a或x≥a的形式。(出示课件第2页)
7.举出不等式的例子,从中找出一元一次不等式的例子,归纳出一元一次不等式的概念。
8.明确本课目标,进入对新课的学习。
9.复习解一元一次方程的解法和步骤。
10.让学生回顾性质,以加强对性质的理解、掌握。
11.运用类比思维
12.自然过度,出示课件第3、4张
(二)、新授:
教学环节
教师活动
学生活动
设计意图
探究一元一次等式的解法
1、学生观察课本第61页例3,教师说明:解不等式就是利用不等式的三条基本性质对不等式进行变形的过程。提醒学生注意步骤。
2.分析学生的解答,提醒学生在解不等式中常见的错误:不等式两边同乘(除)同一个负数不等号方向要改变。
3.激励学生完成对(2)解答,并找学生上讲台演示。
4.强调在数轴上表示解集时的关键(出示课件第8页)
5.出示练习(出示课件第9页)
6.鼓励学生讨论课本第61页的例4。提示学生:首先将简单的文字表达转化成数学语言。(出示课件第10页)
7.指导学生归纳步骤。
8.补充适当的练习,以巩固学生所学。(出示课件第12页)
9.类比解一元一次方程,仔细观察,理解用不等式的性质(3)解不等式的原理,并掌握用数轴表示不等式的解的方法。
10.学生类比解一元一次方程的步骤
与解一元一次不等式的一般步骤,同时完成练习。(出示课件第6页)
11.完成例3(2):2(5x+3)≤x-3(1-2x)的解答。教师提示,组内讨论后,检查自己的解答过程,弥补不足,进一步体会解一元一次不等式的方法。
12.理解、体会在数轴上表示解集的方法和关键。
13.学生组内讨论完成。
14.认真完成对例题的解答,在教师的提示下找到不等量关系,列出不等式:(x+4)/3-(3x-1)/2>1,并求解。.
15.组内讨论并归纳后,看教师所出示的课件。(出示课件第11页)
16.认真完成练习。
17.电脑逐步演示,让学生从演示过程中理解不等式的解法。(出示课件第5张)
18.巩固对一般解法的理解、掌握。
19.通过类比归纳,提高学生的自学能力。(出示课件第7页)以订正学生解答。
20.让学生明白不等式的解集是一个范围,而方程的解是一个值。
21.培养学生的扩展能力。
22.类比一元一次方程的解法以加深对一元一次不等式解法的理解。
23.通过动手、动脑使所学知识得到巩固。
24.巩固所学。
(三)、小结与巩固:
教学环节
教师活动
学生活动
设计意图
小结与巩固
1.引导学生对本课知识进行归纳。
2.学生完成后(出示课件第13、14页)。
3.练习与巩固。
1.学生组内讨论小结,组长帮助组员对知识巩固、提升。
2.学生加强理解。
3.完成练习:书63页第4题,第5(2、4)题。
1.培养学生总结、归纳的能力。
2.点拨学生对知识的理解与掌握。
3.巩固本课所学。
新教材基本不等式教学设计篇十四
【教学目标】:
1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。
2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型
3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。
【重点难点】:
重点:一元一次不等式在实际问题中的应用。
难点:在实际问题中建立一元一次不等式的数量关系。
关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。
【教学过程】:
这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。
问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?
(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。让学生充分进行讨论交流,在活动中体会不等式的应用。在分析问题的过程中运用了“求差值比较大小”这一方式,使学生又掌握了一种新的比较两个量之间大小的方式;同时体会到分类考虑问题的思考方式)观察探讨,实际操作
选定了旅行社以后,咱们要去购物了,正好商店为了吸引顾客在举行优惠打折活动
问题2:
甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费。我们选择商店购物才获得更大优惠?分析:这个问题较复杂,从何处入手呢?甲商店优惠方案的起点为购物款达xx元后;乙商店优惠方案的起点为购物款过xx元后。启发提问:我们是否应分情况考虑?可以怎样分情况呢?
(1)如果累计购物不超过50元,则在两店购物花费有区别吗?
(2)如果累计购物超过50元,则在哪家商店购物花费小?为什么?
关键是对于第二个问题的分类,鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路。教师及时予以引导、归纳和总结,让学生感知不等式的建模,在活动中体会不等式的实际作用。
小结:用一元一次不等式知识解决实际问题的基本步骤有哪些?实际问题从关键语句中找条件
符号表达
1、根据设置恰当的未知数
2、用代数式表示各过程量
3、寻找问题中的不等关系列出不等式
解不等式,注意不等式基本性质的运用
(本环节我设置学生分组合作共同讨论,由学生代表发言,互相补充,最后总结。学生会体会到本节课我们不仅仅是解了如何分析问题中的不等关系列出不等式,也尝试了利用分类的方法考虑问题,同时还学到了一种新的比较两个量大小的方法:求差比较法。体现了新课标提倡的学生主动,师生互动,生生互动的新的`总结方式。)预留悬念要出游旅行,目的地的天气情况也是我们很关注的问题,下节课咱们再一起看看杜氏旅游渡假村所在地的天气如何,大家可以自己先去查查相关的资料。
(抛出学生感兴趣的问题,为下节课的教学内容打下了伏笔,做了很好的铺垫)
教学设计:
一元一次不等式的实际应用是人教版七年级下册第九章第二小节内容,是在学习了一元一次不等式的性质及其解法、用一元一次方程解决实际问题等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为下节一元一次不等式组的学习奠定基础,具有承上启下的作用;同时通过本节的学习,向学生渗透“求差比较两个量的大小”的方法,和分类考虑问题的探究方式,可以提高学生分析、解决问题的能力。
本节课的教学设计从以下几个方面进行设置:
1。、教学内容:
本节课的教学内容大多以实际生活中的问题情景呈现出来,给学生以亲切感,可以提高学生的学习兴趣,让学生感受到数学来源于生活,学生通过合作、努力解决问题,体会到学习数学的价值。
2、组织形式:
本节课以开放式的课堂形式组织教学,让学生进行合作学习,共同操作与探索、共同研究、解决问题。由于本节教学内容的特点,教师无须过多讲解,只需引导、组织学生活动,有意识的让学生主动去观察、比较、分类、归纳,积极思考,并真正参与到学生的讨论之中。这节课成功与否,不在于教师的讲解本领,而在于调动、启发学生、提出问题的水平以及激起学生求知欲、培养他们学习数学的主动性的艺术高低。
3、学习方式:
动手实践、自主探索是学习数学的重要方式,因此本节课改变了过去接受式的学习方式,学生不是等待知识的传递,而是主动的参与到学习活动中,成为学习的主体。
4、评价方式:
教师在教学中关注的是学生对待学习的态度是否积极,关注的是学生思考。
新教材基本不等式教学设计篇十五
教学目标:
(知识与技能,过程与方法,情感态度价值观)
(一)教学知识点
1.一元一次不等式与一次函数的关系.
2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.
(二)能力训练要求
1.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.
2.训练大家能利用数学知识去解决实际问题的能力.
(三)情感与价值观要求
体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.
教学重点
了解一元一次不等式与一次函数之间的关系.
教学难点
自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.
教学过程
创设情境,导入课题,展示教学目标
1.张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。你能帮帮张大爷选择一种电话卡吗?
2.展示学习目标:
(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣
学生自主研学
指出探究方向,巡回指导学生,答疑解惑
探究一:一元一次不等式与一次函数的关系。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:
问题2:如果y=-2x-5,那么当x取何值时,y>0?当x取何值时,y<1?
你是怎样求解的?与同伴交流
让每个学生都投入到探究中来养成自主学习习惯
小组合作互学
巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。答疑展示中存在的问题。
探究二:一元一次不等式与一次函数关系的简单应用。
问题3.兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑,已知弟弟每秒跑3m,哥哥每秒跑4m,列出函数关系式,画出函数图象,观察图象回答下列问题:
(1)何时哥哥分追上弟弟?
(2)何时弟弟跑在哥哥前面?
(3)何时哥哥跑在弟弟前面?
(4)谁先跑过20m?谁先跑过100m?
你是怎样求解的?与同伴交流。
问题4:已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.
让学生体会数形结合的魅力所在。理解函数和不等式的联系。
精讲点拨
移动通讯公司开设了两种长途通讯业务:全球通使用者先缴50元基础费,然后每通话1分钟付话费0.4元;神州行不交月基础费,每通话1分钟付话费0.6元。若设一个月内通话x分钟,两种通讯方式的费用分别为y1元和y2元,那么
(1)写出y1、y2与x之间的函数关系式;
(2)在同一直角坐标系中画出两函数的图象;
(3)求出或寻求出一个月内通话多少分钟,两种通讯方式费用相同;
(4)若某人预计一个月内使用话费200元,应选择哪种通讯方式较合算?
在共同探究的过程中加强理解,体会数学在生活中的重大应用,进行能力提升。
提高学生应用数学知识解决实际问题的能力
达标检测
展示检测内容
积极完成导学案上的检测内容,相互点评。
反馈学生学习效果
知识与收获
引导学生归纳探究内容
学生回顾总结学习收获,交流学习心得。
学会归纳与总结
布置作业
教材p51.习题2.6知识技能1;问题解决2,3.
一、学习与探究:
1.一元一次不等式与一次函数之间的关系;
2.做一做(根据函数图象求不等式);
3.试一试(当x取何值时,y>0);
4.议一议
二、精讲点拨:
三、知识与收获:
四、课后作业:
新教材基本不等式教学设计篇十六
一、课程内容剖析:
1、教材内容影响力和功效
这节课是数学(基本控制模块)上册第二章第三节《一元二次不等式》。从内容上看它是大伙儿初中学过的一元一次不等式的扩宽,此外它也与一元二次方程、二次函数正中间联系紧密联系,牵涉到的专业知识方面较多。从观念方面看,这节课突显本现了数形结合观念。另外一元二次不等式是处理函数定义域、值域等难题的关键专用工具,因而这节课在全部初中数学中具备较关键的影响力和功效。
2、课程目标
专业知识总体目标:正确认识一元二次不等式、一元二次方程、二次函数的关联。熟练掌握一元二次不等式的解法。
能力总体目标:塑造数形结合观念、抽象思维能力和形象思维能力。
观念总体目标:在课堂教学中渗入由实际到抽象性,由独特到一般,类比猜测、等价转换的数学观念方式 。
感情总体目标:根据实际情境,使学生感受数学与实践活动的密切联系,体会数学风采,激起学生求知冲动。
3、重点难点
重要:一元二次不等式的解法。
难点:一元二次方程,一元二次不等式与二次函数的关系。
二、学生状况剖析:
大家的学生是在学了一元一次不等式,一元一次方程、一元一次涵数,一元二次方程的基本上学习培训一元二次不等式。但大多数数学生的基本都并不是非常好,解一元二次方程有一定的艰难。
三、课堂教学环境分析:
教学环境应包含和睦的师生关系、多媒体系统的有效运用、优良的课堂教学机构、有效的难题情境。构建和睦的师生关系有益于提升学习兴趣,大家院校要创建和睦的师生关系是必须花许多思绪的,非常是学生就业班的同学们,且要有一个非常长的融入r间。大家院校的每名教师都是有手提电脑,每间课室都是有宽屏电子器件显示屏,教师都能灵活运用多媒体设备的应用。应用信息化教学效果非常的好、学生非常容易了解、学习培训的主动性高。上课的时候较为留意构建适合的难题情境,实际效果会非常好,学生从日常生活具体考虑,回应所提的难题,不经意间学了新的专业知识,她们不容易觉得到学习培训疲惫,反倒能积极地学习培训。
四、课程目标剖析:
专业技能与专业能力:正确对待一元二次不等式、一元二次方程、二次函数的关系。熟练掌握一元二次不等式的解法。
全过程与方式 :根据看图像找解集,塑造学生从从形到数的转换能力,从实际到抽象性、从独特到一般的梳理归纳能力;根据对难题的思索、研究、沟通交流,塑造学生优良的数学沟通交流能力,提高其数形结合的逻辑思维观念。在课堂教学中渗入由实际到抽象性,由独特到一般,类比猜测、等价转换的数学观念方式 。
感情心态与价值观念:根据实际情境,使学生感受数学与实践活动的密切联系,激起学生学习培训科学研究一元二次不等式的主动性和对数学的感情,使学生充足感受获得专业知识的取得成功体会;在研究、探讨、沟通交流全过程中塑造学生的协作观念和团队意识,使其培养认真细致的治学心态和优良的思维习惯。
新教材基本不等式教学设计篇十七
一元一次不等式教学设计
●○教学目标
知识与技能
(1)运用问题的形式帮助学生整理全章的内容,建立知识体系。
(2)在独立思考的基础上,鼓励学生开展小组和全班的交流,使学生通过交流和反思加强对所学知识的理解和掌握,并逐步建立知识体系。
教学思考
通过问题情境的设立,使学生再现已学知识,锻炼抽象、概括的能力。解决问题
通过具体问题来体会知识间的联系和学习本章所采用的主要思想方法。
情感态度与价值观
通过独立思考获取学习的成功体验,通过小组交流培养合作交流意识,通过大胆发表自己的观点,增强自信心。
●○重点和难点
重点:对一元一次不等式基本性质的掌握;理解不等式(组)解及解集的含义,会解简单的一元一不等式(组),并会在数轴上表示其解集;会解相关的问题,建立起相关的知识体系。
难点:建立起相关的知识体系。
●○课前准备
多媒体及课件
●○教学设计
教师活动学生活动
交代本节课的主要任务.
多媒体显示本章的知识框架图
以问题的形式引导学生思考本章内容
结合本章的知识框架图,统观全章的知识内容,积极思考并回答问题
问题1
不等式有哪些基本性质?它与等式的性质有什么相同和不同之处?
小组交流有关不等式和等式基本性质的知识点.
问题2
解一元一次不等式和解一元一次方程有什么异同?引导学生回忆解一元一次方程的步骤.比较两者之间的不同学生举例回答.
回答解一元一次方程的步骤
比较两者之间的差异
问题3
举例说明在数轴上如何表示一元一不等式(组)的解集分组竞赛.看哪一组出的题型好,全班一起解答.
问题4
说一说运用不等式解决实际问题的基本过程
回答教师提问
问题5
举例说明不等式、函数、方程的联系.引导学生回忆函数的有关内容.举例说明三者之间的关系.小组讨论,合作回答.函数性质、图象
小组交流、讨论不等式和函数、函数和方程等之间的关系,分别举例说明.
课堂小结理解不等式的重要作用
结合本章知识框架图,让学生谈本节课的收获
布置作业开动脑筋,勇于表达自己的想法.
回顾与思考2
●○教学目标
知识与技能
(1)在运用所学知识解决具体问题的同时,加深对全章知识体系理解。
(2)发展学生抽象能力、推理能力和有条理表达自己想法的能力.
教学思考:
体会数学的应用价值,并学会在解决问题过程中与他人合作.解决问题。在独立思考的基础上,积极参与问题的讨论,从交流中学习,并敢于发表自己的观点和主张,同时尊重与理解别人的观点。
情感态度与价值观:
进一步尝试学习数学的成功体验,认识到不等式是解决实际问题的重要工具,逐渐形成对数学活动积极参与的意识。
●○重点和难点
重点:
对一元一次不等式基本性质的掌握;理解不等式(组)解及解集的含义,会解简单的一元一次不等式(组),并会在数轴上表示其解集;会解相关的问题,建立起相关的知识体系。
难点:建立起相关的知识体系。
●○课前准备多媒体及课件
●○教学设计
教师活动学生活动
引导学生写出本章的知识框架图 不等式─→不等式基本性质
↓ ↓
↓ ↓
实际应用←──────学生回答问题
安排一组练习让学生充分充分讨论解决.
1.解下列不等式,并把解集表示在数轴上
(1)2(-3+x)>3(x+2)(2)
(3)(4)
(5)求不等式5(x-2)≤28+2x的正整数解
2.已知函数y=2x-4
(1)当x取何值时,y>0(2)当x取何值时,y=0(3)当x取何值时,y<0
3.某工人制造机器零件,如果每天比预定多做一件,那么8天所做零件超过100件;如果每天比预定少做一件,那么8天所做零件不到90件,这个工人预定每天做几个零件?
更多初二数学教案,请点击