当前位置:网站首页 >> 作文 >> 高三数学会考公式 数学会考公式及解题知识点(3篇)

高三数学会考公式 数学会考公式及解题知识点(3篇)

格式:DOC 上传日期:2023-01-11 14:10:50
高三数学会考公式 数学会考公式及解题知识点(3篇)
时间:2023-01-11 14:10:50     小编:zdfb

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

高三数学会考公式 数学会考公式及解题知识点篇一

1.速度×时间=路程

2.单价×数量=总价

路程÷速度=时间

总价÷单价=数量

路程÷时间=速度

总价÷数量=单价

3.工作效率×工作时间=工作总量

4.正方形的周长=边长×4.用字母表示:c=4a

工作总量÷工作效率=工作时间

正方形的面积=边长×边长.用字母表示:s=a²

工作总量÷工作时间=工作效率

5.正方形的表面积=棱长×棱长×6.用字母表示:s=6a²

正方形的棱长总和=(长+宽+高)x4

正方形的体积=棱长×棱长×棱长.用字母表示:v= a³

6.长方形的表面积=(长×宽+长×高+宽×高)×2

长方形的体积=长×宽×高

长方形的棱长总和=(长+宽+高)×4 7.三角形的面积=底×高÷2 用字母表示:s=ah÷2

三角形的高=面积 ×2÷底

三角形的底=面积 ×2÷高

8.平行四边形的面积=底×高

用字母表示:s=ah 9.梯形的面积=(上底+下底)×高÷2

10.c=πd=2πr

d=c÷π

r=c÷2÷π

半圆的周长=πr+2 r=πr+ d s圆=πr²

11.路程=速度和×相遇时间

相遇时间=路程÷速度和

速度和=路程÷相遇时间

12.加法结合律:a + b = b + a

乘法交换律:a × b = b × a

乘法结合律:a × b × c = a ×(b × c)

乘法分配律:a × b + a × c = a ×(b + c)

13.有余数的除法: 被除数=商×除数+余数

14.非封闭图形植树问题:(1)两端都栽:距离÷间隔数 +1=棵数

(2)一端栽:距离÷间隔数=棵数

(3)两端都不栽: 距离÷间隔数-1=棵数

15.封闭图形植树问题:(1)只栽一端:棵树=间隔数

(2)正方形线路上植树: 棵数=(每边的棵数-1)×边数

高三数学会考公式 数学会考公式及解题知识点篇二

高中物理学业水平考试公式(必背)▲匀变速运动:

加速度定义式:a速度公式:vv0at

vt

12at 2位移公式:xv0t 2速度平方差公式:v2v02ax 位移差公式:δx=xn+1-xn=at2。

平均速度公式:vvv0vt22v

s t 纸带求速度公式:v

s1s2 2t▲滑动摩擦力:fn

▲弹簧弹力(胡克定律)fkx

▲牛顿第二定律:fma

有水平牵引力而加速时:ffma

只有摩擦力而减速时:fma

竖直加速减速运动:nmgma(超重)或 mgnma(失重)▲平抛公式:

vxv0 vygt vvxyv0(gt)2xv0t

y▲圆周运动公式:

222

tangt v012gt

s2x2y2

tany xv线速度

22r1ft

t

周期与频率t

角速度

2线速度和角速度的关系:vr

vv242r2fmamm2r anr2nnrrt

向心力向心加速度

v2过山车最高点临界速度:mgm

rv2v2圆轨道最低点:n-mgm 拱桥最高点:mg-nm

rrmmv2422mrm2rmamg(黄金公式)▲天体运动公式:g2mrrt1.加速度与轨道半径的关系:由ggmmmama得 2rr

2mmv2gm2.线速度与轨道半径的关系:由g2m得v rr

rr3gmmm23.周期与轨道半径的关系:由g2m r得224rt

t卫星越高,运行速度越小,角速度越小,周期越大。也越难发射(地面的发射速度要更大)

2gmmmv第一宇宙速度:由g2=m1得v1

rrr黄金代换公式:gmr2g

▲功的定义:wfscos 功的推论:wpt

2w 功率推论:pfv(当牵引力沿速度)t12▲动能:ekmv 重力势能(重力做功):epmgh

21122▲动能定理:动能变化等于总功。mvt-mv0mgh(只有重力做功时)(或机械能

22功率定义:p守恒定律)

▲库仑定律:fkq1q2fe

场强定义式: 2qrqu 欧姆定律:i tr2▲电流定义式:iu2u22t

电功率:puiir▲电功(电热): wuitirt rr▲磁感应强度定义:bffilb

il 安培力:(电流垂直磁场时)▲磁通量定义:bs

法拉第电磁感应定律:n t▲变压器公式:u1n1 u2n22p2▲远距离输电:输电线上损失的热功率 pir=2r 高压输电有利

u▲波的公式: cf 波速c、波长、频率f 波长越大,频率越小

高三数学会考公式 数学会考公式及解题知识点篇三

乘法与因式分解

a^2-b^2=(a+b)(a-b)

a^3+b^3=(a+b)(a^2-ab+b^2)•

a^3-b^3=(a-b(a^2+ab+b^2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a

根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式

b^2-4ac=0 注:方程有两个相等的实根

b^2-4ac>0 注:方程有两个不等的实根 

b^2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

sin(a+b)=sinacosb+cosasinb

sin(a-b)=sinacosb-sinbcosa 

cos(a+b)=cosacosb-sinasinb

cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb)

tan(a-b)=(tana-tanb)/(1+tanatanb)

cot(a+b)=(cotacotb-1)/(cotb+cota)

cot(a-b)=(cotacotb+1)/(cotb-cota)

倍角公式

tan2a=2tana/[1-(tana)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2

半角公式

sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)

cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)

tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))cot(a/2)=√((1+cosa)/((1-cosa))cot(a/2)=-√((1+cosa)/((1-cosa))和差化积

2sinacosb=sin(a+b)+sin(a-b)

2cosasinb=sin(a+b)-sin(a-b))

2cosacosb=cos(a+b)-sin(a-b)

-2sinasinb=cos(a+b)-cos(a-b)

sina+sinb=2sin((a+b)/2)cos((a-b)/2

cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

tana+tanb=sin(a+b)/cosacosb

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2-

2+4+6+8+10+12+14+…+(2n)=n(n+1)5

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圆半径余弦定理 b^2=a^2+c^2-2accosb 注:角b是边a和边c的夹角

圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标

圆的一般方程 x^2+y^2+dx+ey+f=0 注:d^2+e^2-4f>0

抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py

直棱柱侧面积 s=c*h 斜棱柱侧面积 s=c'*h

正棱锥侧面积 s=1/2c*h' 正棱台侧面积 s=1/2(c+c')h'

圆台侧面积 s=1/2(c+c')l=pi(r+r)l 球的表面积 s=4pi*r2

圆柱侧面积 s=c*h=2pi*h 圆锥侧面积 s=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 v=1/3*s*h 圆锥体体积公式 v=1/3*pi*r2h 

斜棱柱体积 v=s'l 注:其中,s'是直截面面积,l是侧棱长

柱体体积公式 v=s*h 圆柱体 v=pi*r2h

定理:过两点有且只有一条直线两点之间线段最短同角或等角的补角相等同角或等角的余角相等过一点有且只有一条直线和已知直线垂直直线外一点与直线上各点连接的所有线段中,垂线段最短平行公理 经过直线外一点,有且只有一条直线与这条直线平行如果两条直线都和第三条直线平行,这两条直线也互相平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行

12两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补定理 三角形两边的和大于第三边推论 三角形两边的差小于第三边三角形内角和定理 三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角的和推论3 三角形的一个外角大于任何一个和它不相邻的内角全等三角形的对应边、对应角相等

22边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等

作者:尘世的angel2008-11-22 22:48回复此发言

------------------高中数学公式角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas)有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss)有三边对应相等的两个三角形全等斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等定理2 到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

推论1 三个角都相等的三角形是等边三角形

推论 2 有一个角等于60°的等腰三角形是等边三角形

在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

直角三角形斜边上的中线等于斜边上的一半

定理 线段垂直平分线上的点和这条线段两个端点的距离相等 

逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形

定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1平行四边形的对角相等

53平行四边形性质定理2平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

作者:尘世的angel2008-11-22 22:48回复此发言

------------------高中数学公式

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 l=(a+b)÷2 s=l×h

83(1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d wc呁/s∕ ?

84(2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85(3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

相似三角形判定定理1 两角对应相等,两三角形相似(asa)

直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)

定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

性质定理2 相似三角形周长的比等于相似比

性质定理3 相似三角形面积的比等于相似比的平方

任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值

101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线

109定理 不在同一直线上的三点确定一个圆。

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角121①直线l和⊙o相交 d<r

②直线l和⊙o相切 d=r

③直线l和⊙o相离 d>r

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:5.99元 10元
微信扫码支付
已付款请点这里
b.包月复制
付费后30天内不限量复制
特价:9.99元 10元
微信扫码支付
已付款请点这里 联系客服