为保证事情或工作高起点、高质量、高水平开展,常常需要提前准备一份具体、详细、针对性强的方案,方案是书面计划,是具体行动实施办法细则,步骤等。怎样写方案才更能起到其作用呢?方案应该怎么制定呢?接下来小编就给大家介绍一下方案应该怎么去写,我们一起来了解一下吧。
乘法分配律教学设计方案篇1
教学目标
知识与技能:通过情景创设,在解决实际问题的过程中充分调用学生已有的知识经验,进行知识迁移。学生在老师的引导下探究和归纳乘法交换律、结合律,理解乘法交换律、结合律的作用,了解运用运算定律可以进行一些简便运算。
过程与方法:鼓励学生大胆猜想,并从中感悟科学验证的方法。感受数学与现实生活的联系,能用所学知识解决简单的实际问题。培养根据具体情况,选择适当算法的意识与能力,发展思维的灵活性。
情感、态度和价值观:通过教学情景的创设和欣赏自然景色的美,向学生渗透环保教育。
教学重难点
教学重点
探索发现乘法交换律、结合律,懂得运用所学知识进行简便计算。
教学难点
乘法分配律的应用。
教学工具
多媒体课件
教学过程
一、复习导入
二、学习乘法交换律和乘法结合律
1、学习例5。
(1)出示例5
(2)学生在练习本上独立解决问题。
(3)引导学生对解决的问题进行汇报。
4×25=100(人)
25×4=100(人)
两个算式有什么特点?
你还能举出其他这样的例子吗?
教师根据学生的举例进行板书。
你们能给乘法的这种规律起个名字吗?
板书:交换两个因数的位置,积不变。这叫做乘法交换律。
能试着用字母表示吗?
学生汇报字母表示:a×b=b×a
2、学习例6。
(1)出示例6
(2)学生在练习本上独立解决问题。
教师巡视,适时指导。
(25×5)×2 25×(5×2)
=125×2 =10×25
=250(桶) =250(桶)
(3)引导学生对解决的问题进行汇报。
两个算式有什么特点?
你还能举出其他这样的例子吗?
教师根据学生的举例进行板书。
你们能给乘法的这种规律起个名字吗?
板书:先把前两个数相乘,或者先把后两个数相乘,积不变。这叫做乘法结合律。
能试着用字母表示吗?
学生汇报字母表示:(a×b) ×c=a× (b×c)
(4)完成例6下面做一做的第一题。
3、学习例7。
(1)出示例7。
(2)学生在练习本上独立解决问题。
教师巡视,适时指导。
(3)引导学生对解决的问题进行汇报。
两个算式有什么特点?
你还能举出其他这样的例子吗?
教师根据学生的举例进行板书。
你们能给乘法的这种规律起个名字吗?
板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
能试着用字母表示吗?
学生汇报字母表示:(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
(4)完成例7下面做一做的第一题。
3、学习例8。
(1)出示例8。
(2)收集信息,明确条件问题
(3)学生独立思考,尝试解决问题
(4)读懂过程,感悟不同方法
课后小结
今天你有什么收获?
课后习题
1、运用乘法运算定律,在下面的横线上填上恰当的数。
78×85×17=78×(_____×______)
81×(43×32)=(_____×______)×32
(28+25)×4= ×4+ ×4
15×24+12×15= ×( + )
6×47+6×53= ×( + )
(13+ )×10= ×10+7×
2、判断对错。
(1)39×22-39×2=39×22-2 ( )
(2)39×22-39×2=39×(22-2) ( )
(3)39×28+39×72=39×28+72 ( )
(4)39×28+39×72=39×(28+72) ( )
(5)39×12=39×(12-2) ( )
(6)39×12=39×(10+2) ( )
板书
交换两个因数的位置,积不变。这叫做乘法交换律。
先把前两个数相乘,或者先把后两个数相乘,积不变。这叫做乘法结合律
乘法分配律教学设计方案篇2
一、教材分析
(一)教学内容在教材中的地位和作用
本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。
(二)教学重点、难点的确定
教学重点:理解、应用乘法分配律。
教学难点:乘法分配律的逆运算。
(三)《大纲》要求
让学生从正、反两方面正确理解乘法分配律。
(四)学情分析
学生已经学习掌握了乘法交换律、结合律,并能够初步应用这些定律进行一些简便计算的基础上接着学习“乘法分配律”不会觉得太难,但是学生的概括、归纳能力还是一个薄弱的环节。
二、教学目标的确定
根据《大纲》要求,教学内容和学情,本节课我制定如下教学目标。
(一)知识目标:
使学生理解和掌握乘法分配律,会应用乘法分配律进行简便运算。
(二)智能目标:
培养学生的分析、比较、综合能力以及初步的抽象概括能力。
(三)情感目标:
通过学生的自主学习,激发学生学习数学的兴趣。
三、教法与学法分析
(一)教学方法
在设计乘法分配律的教学时,依据学生的认知发展水平和已有的知识经验。采用自主学习、当堂训练的教学模式。充分发挥学生的自主性、能动性,把课堂还给学生,让学生多思、多说、多练,使学生由被动的学习转为积极主动参与的学习。
(二)学法指导
本节课以学生自主学习、自主探索为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性。通过学生多思、多说、多练。积极参与教学的整个过程。
(三)教学准备
多媒体课件。
教学过程分析
一、创设情境,激趣引入。
第一步我用课件出示口算题: 125 × 8 25 × 4
25 × 6 × 4 7 × 8 × 5 2 × 3 × 50
课件设计可以使学生看得更清楚。也是为了让学生想说、敢说、抢着说,激发他们早点进入学习状态。
第二步创设情境,师生比赛。出示一组题从中选取两道,谁能看一眼题目就能说出得数。
( 40+4 )× 25 37 × 45+55 × 37
68 × 32+68 × 68 ( 80+8 )× 125
比赛的结果:老师算得快学生算得慢。学生心里就会想:老师怎么你算得那么快?这 时 老师导入:刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,你们想知道吗?此时同学们一定很想知道,学生的求知欲望达到了高潮。老师告诉学生乘法的又一法宝就是乘法分配律。板书课题,进入新知。
二、出示学习目标,自学新知。
本环节先用幻灯片出示学习目标:
1 、什么叫乘法分配律?用字母如何表示 ?
2 、应用乘法分配律有什么用?
3 、什么地方用乘法分配律?
4 、例 7 的两道计算题有什么特点?如何计算?
学生依据学习目标 , 自学课本 64 — 65 页的内容。要求学生用 6 、 7 分钟的时间掌握学习目标中的内容。学生欲望值高,所以学生会发挥自己的潜能。想尽办法去记忆新知识。在学生的自学过程中,老师要巡视指导,帮助个别学生掌握新知识。此环节即使有个别同学不理解课本中的知识,可他为了在测验环节中取得较理想的成绩,也会用心的去掌握乘法分配律。
三、互相交流,加强记忆。
老师相信,经过自主学习,同学们已经掌握了乘法分配律。下面同学们就根据学习目标把自己认识的乘法分配律为大家介绍一番。
由于上一环节学生学会了乘法分配律,这时他一定会特别想把自己的看法、见解告诉大家。这时就要为学生提供展示自我的平台。让学生自由发言,谈谈自己对乘法分配律的认识。师生间、生生间互相交流,合作学习,加强记忆。
四、当堂测验,检验学习效果。(幻灯片出示下面各题)
在巩固练习阶段,还给学生学习的自主权,还给学生自我展示的空间。并通过比较,感悟计算方法的灵活多样,培养学生灵活运用所学知识解决生活中遇到的问题。在设计练习时,设计了有层次的练习题,使学有余力的学生在原有的基础上有所提高,体现了因材施教的思想,落实了“人人学有价值的数学”、“人人都能获得必要的数学”、“不同的人在数学上得到不同的发展”基本教学理念。
附:板书设计
乘法分配律
(a+b) × c = a × c+b × c
乘法分配律教学设计方案篇3
设计说明
教材中本单元的一个鲜明特点是不仅给出一些数值计算的实例,让学生通过计算发现规律,而且结合学生熟悉的问题情境,帮助学生体会运算定律在现实生活中的应用。这样便于学生依据已有的知识经验,分析比较不同的解决问题的方法,从而引出运算定律。因此,对于乘法分配律的教学,本教学设计注重体现以下三点:
1.游戏激趣,设置悬念。
在游戏中学习,体现了玩中学,做中学的理念,让学生体会到玩中有乐,乐中有疑。上课伊始,通过游戏创设情境,设置悬念,把全班学生分成两组进行计算比赛,通过对比赛结果的质疑引发学生对新知的探究欲望。
2.观察、比较,举例验证猜想。
在学习新知的过程中,我把乘法分配律的知识放在具体的生活情境中,让学生通过运用多种计算方法去感知解决问题的多样化,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证,在这样的学习过程中,让学生感受数学家发现规律的过程,从而积累丰富的探究数学知识的经验。
3.多角度练习,强化认识和理解。
小学数学练习题在整个数学教学中所占的比重很大,数学基础知识的巩固和掌握,解题技能、技巧的形成,以及思维能力的培养等都离不开练习题。因此,在本节课的练习设计上,我力求有针对性、有梯度地设题,同时也注重知识的延伸。
课前准备
教师准备多媒体课件
教学过程
⊙游戏激趣
1.比赛热身。
师:同学们,请大家准备好纸和笔,在学习新内容前,我们先进行一个小小的数学热身赛。
师:请看大屏幕,左边的两组同学计算大屏幕上第(1)小题,右边的两组同学计算大屏幕上第(2)小题,看哪边的同学计算得又对又快。
(1)9×37+9×63 (2)9×(37+63)
2.评出胜负。
师:做完的同学请举手,汇报计算过程。
师:通过同学们的汇报,可以看出右边的同学做得比较快,你们知道这是为什么吗?这两道题有什么联系吗?
预设
生:虽然这两道题的算式和运算顺序不同,但计算结果相同,可以用等号连接这两道算式,即9×37+9×63=9×(37+63)。
师:同学们说得非常好,尤其是__,我们就先将他的这个发现命名为__猜想。
设计意图:借助数学热身赛激发学生的学习兴趣,让学生感知简算方法,猜测其中可能存在的数学规律,从而激发学生探究的欲望,为学习新知做好了情感铺垫。
⊙引导探究,发现规律
1.课件出示例7。
一共有多少名同学参加了这次植树活动?
(1)需要知道哪些条件?请在情境图里找一找。(出示情境图)
(2)把相关信息组织起来编成一道实际问题,并口述出来。(我校学生参加植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。一共有多少名同学参加了这次植树活动)
(3)小组讨论,尝试用不同的方法解决问题并板书。
引导各小组汇报解题方法,并说明这样解题的理由。
解法一(4+2)×25
=6×25
=150(名)
(4+2是求每组一共有多少名同学,再乘25就求出了25个小组一共有多少名同学)
解法二4×25+2×25
=100+50
=150(名)
(4×25是求25个小组一共有多少名同学负责挖坑、种树,2×25是求25个小组一共有多少名同学负责抬水、浇树,再把它们加起来就是求一共有多少名同学)
2.观察算式,探究发现。(见课堂活动卡)
(1)小组合作,讨论探究。
①两道算式有什么相同点?
②两道算式有什么不同点?
③两道算式有什么联系?
乘法分配律教学设计方案篇4
学情分析:
乘法分配律这个知识点在本节课以前学生已经有一些潜移默化的理解,在实际计算中也有应用,如:本单元第一课时的《卫星运行时间》乘数是两位的乘法中,“114×21=” 不论是第一种“114×20=2280,114×1=114, 2280+114=2394 ”还是第四种用竖式计算,其实质都是在利用乘法分配律这一理论依据,即将21个114,分成20个114和1个114的和,只是表达形式不同罢了。因此,基于这些基础,我教学时特别注重与旧知的联系和在意义上的沟通。
教学目标:
1.理解并掌握乘法分配律并会用字母表示。
2.能够运用乘法分配律进行简便计算。
3.在乘法分配律的发现过程中训练学生观察、归纳、概括等能力。
4.感受“由特殊到一般,再由一般到特殊”的认识事物的方法,增强独立自主、主动探索、自己得出结论的学习意识。
教学重点:
理解并掌握乘法分配律。
教学难点:
乘法分配律的推理及运用。
教学过程:
一、情景激趣,提出猜想
1.情景
暑假中,我们谕小娃娃表演的《阳光羌娃》在比赛中获得了巨大的成功,而且,他们马上还要到香港参加演出。(出示照片)
出示资料: 他们每天都在辛苦地训练着,有时会练得吃饭的时间都没有,昨天晚上,王老师就给参加训练的18个男生和23个女生每人准备了一份8元的快餐,你知道王老师一共用了多少钱吗?
(设计意图:以学生熟悉的学校中的大事作为问题背景,可以让学生切实的感受到数学的广泛应用性,也利于学生主动解决问题。)
①整理条件、问题
从这段资料中你知道了那些信息?王老师遇到了哪些问题?
②学生列式,抽生回答: (18+23)×8, 18×8+23×8
③交流算式的意义
第一个算式先算什么?再算什么?第二个算式呢?
④计算:(发现两个算式结果相等)
⑤观察、分析算式特点
咦,我发现这两个算式非常有意思。你看看,这是两个不同的算式,很多地方都不相同,仔细看看,又有相同的地方,对吧!
现在,就来仔细观察一下这两个算式,看看它们到底有哪些相同点?又有哪些不同点?
⑥全班交流,引导学生从下面几个方面进行思考
A.涉及到得运算及顺序:都包含了+、×这两种运算,左边是先算加法,合起来以后再乘;右边是分别先乘,然后再加。
B.涉及到的数:都用到了18、23和8这三个数,其中8在左边出现了一次,在右边出现了两次。
C.计算结果:结果相等。
(设计意图:对算式意义的分析让学生明白这两个算式相等的道理,而从外在特点的分析则让学生初步感知乘法分配律的特点。同时,细致的特点分析也为学生后面的举例验证打下基础)
2.提出猜想
真有趣,运算顺序不同,数据也有不一样的,结果却一样,那是不是只有这一个算式才是这样呢?还是像这样的算式都有这样的规律呢?
怎样才能知道像这样的算式都有这样的规律?
引导学生想到用举例的方法进行验证。
师小结:要想知道这是不是一个普遍的规律,那我们就举出一些这样的例子,再看看它们的结果想不想等就可以了。
(设计意图:对一个人而言,记忆一个知识、规律并不是最重要的,最重要的是他要知道从哪里去寻找知识和规律,要知道他的发现如何去获得证明。本节课就是要以乘法分配律的学习为载体,培养学生这方面的能力,这才是真正的立足于学生一生的发展而在教学。)
二、举例验证,证明合理性
1.全班举例:抽生举例,全班进行判断,看所举的算式是否符合猜想的特征。
2.分组举例
两个孩子为一组,一起举一个例子,再一起计算验证,看结果是否相等。
3.交流:谁愿意把你举的例子和大家一起分享?
A.这个式子符合要求吗?
B.这些式子都有一个共同的规律,这个共同的规律是什么?
教师引导学生小结:左边都是把两个数合起来再与第三个数相乘,右边是分开乘,再把两个积相加,右边算式中这个相同的乘数,在左边算式中放在了括号的外面。
(设计意图:让学生经历举例验证的过程,经历归纳概括的过程。)
三、概括归纳,建立模型
1.个性概括
这样的式子你们还能写吗?能写完吗?
强调这样的例子还有很多很多,是写不完的。
你能用一个式子将所有的像这样的式子都概括出来吗?
学生用自己的方法概括规律。(学生可能用文字概括,可能用图形符号概括,可能用字母概括)。
2.统一认识
教师指出一般用a、b、c表示式子中的三个数,这个规律可以表示成
(a+b)×c=a×c+b×c
给出规律的名称:今天,我们一起动手动脑发现了这个非常有趣的规律,这个规律是四则运算中一个非常重要的规律,叫做乘法分配律。
3.进一步认识
这个式子表示两个数合起来与第三个数相乘的结果与用这两个数分别与第三个数相乘,再把两个积相加的结果相等。反之,两个数都与同一个数相乘,再把积相加所得到的结果与先把这两个数合起来再与第三个数相乘,所得到的结果相等。
齐读式子。
(设计意图:学生通过不完全归纳法,得出规律。在这个过程中,通过不同方法的概括,培养学生的抽象能力,尤其是分析与综合的能力,归纳与概括的能力。)
四、巩固应用,深化认识
1.哪些算式与72×35相等
72×30+72×5
72×35 72×30+5
70×35+2×35
70×35+2
问:为什么相等?
(设计意图:让学生理解乘法分配律的本质意义)
2.你会填吗?
(10+7)×6= ×6+ ×6
8×(125+9)=8× +8×
7×48+7×52= ×( + )
问:订正时强调第一小题为什么这样填?第三个式子中括号外面为什么要写7。
(设计意图:学生进一步深刻理解乘法分配律)
3. 7×48+7×52 7×(48+52)
这两个式子你想选择哪个进行计算?为什么?
如果只给你第一个式子,你会想办法让你的计算变得简便吗?
小结:利用乘法分配律有时候可以使计算变得更简便。
(设计意图:通过学生的观察,明白乘法分配律在计算中的意义。)
>>
4.先想一想,下列各题怎样计算更简便,把你的简便方法写出来。
①34×72+34×28(订正时问:为什么不直接算)
(80+4)×25
订正时问:把(80+4)×25写成80×25+4×25依据是什么?
如果不用好不好算?
(80+20)×25
问:这道题与(80+4)×25的样子一样,都是两个数的和与第三个数相乘,为什么你们又不用乘法分配律来计算了呢?
教师小结:在计算中要根据数据特点,灵活运用乘法分配律。
②21×25 75×99+75
小结:在计算中遇到不符合乘法分配律特点的式子,可以利用拆数等方法,在不改变原数大小的前提下将式子变成符合乘法分配律特点的式子,然后再进行简算。
(设计意图:通过题组练习,让学生在计算中要根据数据特点,灵活运用乘法分配律,培养学生思维的灵活性,不生搬硬套题型。)
五、全课小结
孩子们,你们今天收获了什么?
当你们在一些具体的问题中发现某些规律,而你又不敢肯定它正确时,你可以怎么办呢?
板书设计
乘法分配律
(18+23)×8 (18+23)×8=18×8+23×8 7×48+7×52=7×(48+52)
=41×8 … … … …
=328(元) 学生举例 … … … … 34×72+34×28 (20+4)×25
18×8+23×8 … … … … (80+20)×25
=144+184 个性概括:… …
=328(元) (a+b)×c=a×c+b×c 21×25 75×99+75
乘法分配律教学设计方案篇5
教学目标
1.使学生理解乘法分配律的意义.
2.掌握乘法分配律的应用.
3.通过观察、分析、比较,培养学生的分析、推理和概括能力.
教学重点
乘法分配律的意义及应用.
教学难点
乘法分配律的反应用.
教具学具准备
口算卡片、投影仪.
教学步骤
一、铺垫孕伏
1. 口算.
(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4
2. 用简便方法计算.(说明根据什么简算的)
25×63×4
3. 师生比赛,看谁算得又对又快.
20×5+5×80 (1250+125)×8
让学生说明是怎样算的?
二、探究新知
1.导入:
刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容.(板书课题:乘法分配律).
2.教学例6:
(1)出示例6:演示课件“乘法分配律”出示例6 下载
(2)引导学生观察每组的两个算式.
(3)教师提问:从上面的例子你发现了什么规律?
(4)学生明确:每组中的两个算式都可以用等号连接.
教师板书:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教师出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
学生分组讨论:每组中算式所表示的意义.
(6)反馈练习:按题要求,请你说出一个等式.(投影出示)
(__+__)×__=__+__×
教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
引导学生观察:等号左右两边算式的规律性
启发学生回答:首先是等号左边两个数的和同一个数相乘.
其次是等号右边两个加数分别同一个数相乘再把两个积相加.
最后是等号左右两边的两个算式相等.
3.教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做乘法分配律.
4.反馈练习:
横线上能填几?为什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?
根据练习学生从而得出: (a+b)×c=a×c+b×c
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.
5.教学例7:演示课件“乘法分配律”出示例7 下载
(1)出示例7:102×43
启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?
使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.
教师板书:
(2)出示9×37+9×63
引导学生观察:这类题目的结构形式是怎样的?有什么特点?
教师提问:根据乘法分配律,可以把原式改写成什么形式?
根据学生的回答教师板书:9×37+9×63
=9×(37+63)
=9×100
=900
学生讨论:这样算为什么简便?
师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.
③另外两个不同的因数,是两个能凑成整十、整百、整千的加数.
(3)揭示教师算得快的奥秘
上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便.现在你们会了吗?
三、巩固发展 演示课件“乘法分配律”出示练习 下载
1. 练习十四第1题.
根据运算定律在□里填上适当的数.
(43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2.在横线上填上适当的数.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.
3.把相等的算式用等号连接起来:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×8 24×5+24×8
(3)20×(l+15) 0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25) 4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选择题:
(1)28×(42+29)与下面的( )相等
①28×42+28×29 ②(28+42)×(28+29) ③28×42×29
(2)与a×8-b×8相等的式于是( )
①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8
(3)与(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9
5.练习十四第4题,投影出示.
一辆凤凰牌自行车420元,一辆永久牌自行车405元.现在各买三辆.买凤凰车和永久车一共用多少元?
四、课堂小结
今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.
五、布置作业
练习十四第3题.
用简便方法计算下面各题.
(80+8)×25 35×37+65×37
32×(200+3) 38×29+38
乘法分配律教学设计方案篇6
教学内容:
教科书第64页例6,第64页做一做中的题目和练习十四的第1、2题。
教学目的:
使学生理解并掌握乘法分配律,培养学生的分析推理能力。
教学重难点:
乘法分配律
教具、学具准备:
教师把下面复习中的口算写在卡片上;在一张纸条上画5个白色的正方形和3个红色的正方形,如□□□□□■■■,共做4条。
教学过程:
一、复习
教师出示口算卡片,如:(36+64)8,205+502,6010+1010等,计算每一题时,第一个学生回答先算什么,第二个学生回答再算什么,第三个学生回答接下来算什么。
二、新课
1.教学例6。
教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:
图中一共有多少个正方形?你是怎样想的?先请一个学生回答,教师把学生所列的算式写在黑板上。
还有别的算法吗?你是怎样想的?再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:
(5十3)4 54十34
教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形; 第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出一共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:
这两个算式的计算结果怎样?
这两个算式的计算结果相等,说明这两个算式有什么关系?学生回答后,教师指出:
这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:
(5十3)4=54十34
等号左面的算式是什么意思?(5与3的和乘以4。)
等号右面的算式是什么意思?(5与3先分别乘以4,然后再把两个积相加。)
教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。
教师:下面我们再看两组算式,先看:(18十7)6 186十76
左面的算式是什么意思?(18与7的和乘以6。)
右面的算式是什么意思?(18与7分别乘以6,再把两个积相加。)
算一算左面的算式等于什么?(18加7是25,25乘以6是150。)
算一算右面的算式等于什么?(两个积分别是108和42,它们的和等于150。)
教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它们连起来,教师边说边在两个算式中间画一个等号。
这两个算式相等,说明18与7的和乘以6等于什么?(说明18与7的和乘以6等于18与7先分别乘以6再相加。)
教师:我们再来看两个算式 20(15十9) 20__十209
先来计算一下这两个算式各等于多少?
两个算式都等于多少?
这两个算式相等,说明20乘以15与9的和等于什么?
2.进行抽象概括。
教师指着上面的算式提问:
仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的地方?多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数,第三个等式是一个数乘以两个数的和。)
教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。
再看等号右面的三个算式有什么相同的地方?学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。
等号左面与等号右面相等是什么意思?学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做乘法分配律。同时板书乘法分配律。让学生看教科书第64页下面的方框里的结语,全班齐读两遍。
教师:如果用 表示三个数,乘法分配律可以写成下面的形式:
(a+b) c=ac+bc
等号左面(a+b) c表示什么意思?(表示两个数的和同一个数相乘。)
等号右面ac+bc 表示什么意思?(表示把两个加数分别同这个数相乘,再把两个积相加。)
三、巩固练习
教师在黑板上写算式:(200十3)27,提问:
1.这个算式中是哪两个数的和乘以哪个数?
根据乘法分配律,这个算式等于哪两个乘积的和?
教师在黑板上再写算式:18527十1527,提问:
这个算式中是哪两个数分别乘以哪一个数?
根据乘法分配律,这个算式等于哪两个数的和乘以哪一个数?
2.做第64页做一做中的题目。
先让学生读题,再想一想每个方框里应该填什么数。
在(32十25)4中,两个数的和指的是什么?同一个数相乘指的是哪个数?
根据乘法分配律这个算式应该等于哪两个数分别同4相乘再相加?
第一小题的方框里应该填什么数?(根据乘法分配律,32与25的和乘以4,应该等于32与25分别乘以4再相加,所以两个方框里应该分别填32和25。)
第二小题应该怎样填?根据什么运算定律?(根据乘法分配律,64与12的和乘以3,应该等于64与12分别乘以3再相加。)
四、作业
练习十四的第1、2题。
乘法分配律教学设计方案篇7
教材分析:
乘法分配律是北师大版小学数学四年级的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析:
学生基础较差、有的学生学习习惯不好,所以在设计教学过程时,我注意做到面向全体学生,尽量关注每个学生的发展。在前面教学中发现学生对于用字母表示规律的掌握是比较牢固的,而对于一些有规律的数字也只是进行简单的竖式计算,没有发现有些数字相乘之后积的特点,没有发现简算的意义。因此,要让学生在计算中体会出简算的必要和方便,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。
教学目标:
知识与能力:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:
1、在这些学习活动中,使学生感受到他们的身边处处有数学。
2、增加学生之间的了解、同时体会到小伙伴合作的重要。
3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点:理解并掌握乘法分配律——发现问题、提出假设、举例验证、探索出乘法分配律。
教学难点:乘法分配律的推理及应用。
教学过程:
一、发现问题
1.出示情境图,让学生估计墙面上贴了多少块瓷砖。
2. 用不同方法验证结果。让学生用不同方法计算,并引导讨论为什么方法不同结果却一样,这其中是否蕴含着某些规律。
二、提出假设、举例验证、建立模型
1、根据上题的规律提出假设
2、验证提出的假设是否适合其它数据
观察上题算式的特点,小组内举一些数据来验证,可借助计算器,用一些较大的数据验证。
全班交流,并用字母表示分配律。
三、运用乘法分配律的简算。
1、试一试
让学生尝试用乘法分配律解决运算中的简算问题。然后进行交流,概括出简算的方法
(10+7)×6=____×6+_____×6
8×(125+9)=8×_____+8×_____
7×48+7×52=______×(_____+_______)
2、练一练:
进一步尝试用用乘法分配律解决运算中的简算问题。
板书设计:
乘法分配律
6×9+4×9=90 40×25+4×25=1100
(6+4)×9=90 (40+4)×25=1100
乘法分配律:(a+b)×c=a×c+b×c
【乘法的分配律和结合律教学设计优质范文】相关推荐文章:
2022年乘法的分配律和结合律教案优质五篇
最新乘法分配律教学设计一等奖 北师大版乘法分配律教学设计
2022年乘法分配律教学设计及反思 乘法分配律应用教学设计及反思
2022年乘法分配律教学设计一等奖范文
乘法分配律教学内容分析 乘法分配律优秀教案