定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行.例如,取n=26,则:若n=449,则第449次“F运算”的结果是______.
定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行.例如,取n=26,则:若n=449,则第449次“F运算”的结果是______.
8
本题提供的“F运算”,需要对正整数n分情况(奇数、偶数)循环计算,由于n=449为奇数应先进行F①运算,
即3×449+5=1352(偶数),
需再进行F②运算,
即1352÷23=169(奇数),
再进行F①运算,得到3×169+5=512(偶数),
再进行F②运算,即512÷29=1(奇数),
再进行F①运算,得到3×1+5=8(偶数),
再进行F②运算,即8÷23=1,
再进行F①运算,得到3×1+5=8(偶数),…,
即第1次运算结果为1352,…,
第4次运算结果为1,第5次运算结果为8,…,
可以发现第6次运算结果为1,第7次运算结果为8,
从第6次运算结果开始循环,且奇数次运算的结果为8,偶数次为1,而第499次是奇数,
这样循环计算一直到第449次“F运算”,得到的结果为8.
故本题答案为:8.
查看答案
单次付费有效 3.99 元
用于查看答案,单次有效 19.99元
包月VIP 9.99 元
用于查看答案,包月VIP无限次 49.99元